Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:33:37.417Z Has data issue: false hasContentIssue false

One-Level Density of Low-lying Zeros of Quadratic and Quartic Hecke $L$-functions

Published online by Cambridge University Press:  30 August 2019

Peng Gao
Affiliation:
School of Mathematics and Systems Science, Beihang University, Beijing 100191, China Email: [email protected]
Liangyi Zhao
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia Email: [email protected]

Abstract

In this paper we prove some one-level density results for the low-lying zeros of families of quadratic and quartic Hecke $L$-functions of the Gaussian field. As corollaries, we deduce that at least 94.27% and 5%, respectively, of the members of the quadratic family and the quartic family do not vanish at the central point.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author P. G. was supported in part by NSFC grant 11871082, and author L. Z. was supported by FRG grant PS43707.

References

Baier, S. and Zhao, L., On the low-lying zeros of Hasse–Weil L-functions for elliptic curves. Adv. Math. 219(2008), no. 3, 952985. https://doi.org/10.1016/j.aim.2008.06.006Google Scholar
Berndt, B. C., Evans, R. J., and Williams, K. S., Gauss and Jacobi sums. John Wiley & Sons, New York, 1998.Google Scholar
Brumer, A., The average rank of elliptic curves. I. Invent. Math. 109(1992), no. 3, 445472. https://doi.org/10.1007/BF01232033Google Scholar
Bui, H. M. and Florea, A., Zeros of quadratic Dirichlet $L$-functions in the hyperelliptic ensemble, Trans. Amer. Math. Soc. (to appear). arxiv:1605.07092Google Scholar
Chowla, S., The Riemann Hypothesis and Hilbert’s Tenth Problem. Mathematics and Its Applications, 4, Gordon and Breach Science Publishers, New York–London–Paris, 1965.Google Scholar
Diaconu, A., Mean square values of Hecke L-series formed with r-th order characters. Invent. Math. 157(2004), no. 3, 635684. https://doi.org/10.1007/s00222-004-0363-6Google Scholar
Dueñez, E. and Miller, S. J., The effect of convolving families of L-functions on the underlying group symmetries. Proc. London Math. Soc. (3) 99(2009), no. 3, 787820. https://doi.org/10.1112/plms/pdp018Google Scholar
Dueñez, E. and Miller, S. J., The low lying zeros of a GL(4) and a GL(6) family of L-functions. Compos. Math. 142(2006), no. 6, 14031425. https://doi.org/10.1112/S0010437X0600220XGoogle Scholar
Entin, A., Roditty-Gershon, E., and Rudnick, Z., Low-lying zeros of quadratic Dirichlet L-functions, hyper-elliptic curves and random matrix theory. Geom. Funct. Anal. 23(2013), no. 4, 12301261. https://doi.org/10.1007/s00039-013-0241-8Google Scholar
Fouvry, E. and Iwaniec, H., Low-lying zeros of dihedral L-functions. Duke Math. J. 116(2003), no. 2, 189217.Google Scholar
Gao, P., n-level density of the low-lying zeros of quadratic Dirichlet L-functions. Int. Math. Res. Not. 2014(2014), no. 6, 16991728. https://doi.org/10.1215/s0012-7094-03-11621-xGoogle Scholar
Gao, P. and Zhao, L., One level density of low-lying zeros of families of L-functions. Compos. Math. 147(2011), no. 1, 118. https://doi.org/10.1112/S0010437X10004914Google Scholar
Gao, P. and Zhao, L., Large sieve inequalities for quartic character sums. Q. J. Math. 63(2012), no. 4, 891917.Google Scholar
Gao, P. and Zhao, L., First moment of Hecke L-functions with quartic characters at the central point. Math. Z. (to appear). arxiv:1706.05450Google Scholar
Gao, P. and Zhao, L., Moments and non-vanishing of Hecke L-functions with quadratic characters in ℚ(i) at the central point (Preprint). arxiv:1707.00091Google Scholar
Güloğlu, A. M., Low-lying zeros of symmetric power L-functions. Int. Math. Res. Not. 2005(2005), no. 9, 517550. https://doi.org/10.1155/IMRN.2005.517Google Scholar
Güloğlu, A. M., On low lying zeros of automorphic L-functions, Ph.D. Thesis (2005). The Ohio State University. http://rave.ohiolink.edu/etdc/view?acc_num=osu1116360250Google Scholar
Heath-Brown, D. R., The average rank of elliptic curves. Duke Math. J. 122(2004), no. 3, 225320. https://doi.org/10.1215/s0012-7094-04-12235-3Google Scholar
Heath-Brown, D. R., Kummer’s conjecture for cubic gauss sums. Israel J. Math. 120(2000), 97124. https://doi.org/10.1007/s11856-000-1273-yGoogle Scholar
Hughes, C. and Miller, S. J., Low-lying zeros of L-functions with orthogonal symmetry. Duke Math. J. 136(2007), no. 1, 115172.Google Scholar
Hughes, C. P. and Rudnick, Z., Linear statistics of low-lying zeros of L-functions. Q. J. Math. 54(2003), no. 3, 309333. https://doi.org/10.1093/qmath/hag021Google Scholar
Huxley, M. N., Integer points, exponential sums and the Riemann zeta function. In: Number theory for the millennium, II (Urbana, IL, 2000). A K Peters, Natick, 2002, pp. 275290.Google Scholar
Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, Second edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 1990.Google Scholar
Iwaniec, H., Luo, W., and Sarnak, P., Low lying zeros of families of L-functions. Inst. Hautes Etudes Sci. Publ. Math. 91(2000), 55131.Google Scholar
Katz, N. and Sarnak, P., Zeros of zeta functions and symmetries. Bull. Amer. Math. Soc. 36(1999), no. 1, 126. https://doi.org/10.1090/S0273-0979-99-00766-1Google Scholar
Katz, N. and Sarnak, P., Random matrices, frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45, American Mathematical Society, Providence, 1999.Google Scholar
Lemmermeyer, F., Reciprocity laws. From Euler to Eisenstein, Springer-Verlag, Berlin, 2000.Google Scholar
Levinson, J. and Miller, S. J., The n-level densities of low-lying zeros of quadratic dirichlet L-functions. Acta Arith. 161(2013), no. 2, 145182.Google Scholar
Luo, W., On Hecke L-series associated with cubic characters. Compos. Math. 140(2004), no. 5, 11911196.Google Scholar
Mason, A. M. and Snaith, N. C., Orthogonal and symplectic n-level densities. arxiv:1509.05250Google Scholar
Mason, A. M. and Snaith, N. C., Symplectic n-level densities with restricted support. Random Matrices Theory Appl. 5(2016), no. 4, 36 pp. https://doi.org/10.1142/S2010326316500131Google Scholar
Miller, S. J., One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries. Compos. Math. 140(2004), no. 4, 952992.Google Scholar
Miller, S. J., A symplectic test of the L-functions ratios conjecture. Int. Math. Res. Not. IMRN (2008). Art. ID rnm146, 36 pp.Google Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, 2007.Google Scholar
Onodera, K., Bound for the sum involving the Jacobi symbol in ℤ[i]. Funct. Approx. Comment. Math. 41(2009), 71103. https://doi.org/10.7169/facm/1254330160Google Scholar
Özlük, A. E. and Snyder, C., On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis. Acta Arith. 91(1999), no. 3, 209228.Google Scholar
Patterson, S. J., The distribution of general Gauss sums and similar arithmetic functions at prime arguments. Proc. London Math. Soc. (3) 54(1987), 193215.Google Scholar
Ricotta, G. and Royer, E., Statistics for low-lying zeros of symmetric power L-functions in the level aspect. Forum Math. 23(2011), no. 5, 9691028. https://doi.org/10.1515/form.2011.035Google Scholar
Royer, E., Petits zéros de fonctions L de formes modulaires. Acta Arith. 99(2001), no. 2, 147172. https://doi.org/10.4064/aa99-2-3Google Scholar
Rubinstein, M. O., Low-lying zeros of L-functions and random matrix theory. Duke Math. J. 209(2001), no. 1, 147181. https://doi.org/10.1215/s0012-7094-01-10916-2Google Scholar
Soundararajan, K., Nonvanishing of quadratic Dirichlet L-functions at $s={\textstyle \frac{1}{2}}$. Ann. of Math. (2) 152(2000), no. 2, 447488. https://doi.org/10.2307/2261390Google Scholar
Young, M. P., Low-lying zeros of families of elliptic curves. J. Amer. Math. Soc. 19(2005), no. 1, 205250. https://doi.org/10.1090/S0894-0347-05-00503-5Google Scholar