Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T10:58:32.671Z Has data issue: false hasContentIssue false

On a family of torsional creep problems in Finsler metrics

Published online by Cambridge University Press:  02 September 2020

Maria Fărcăşeanu
Affiliation:
The University of Sydney, Sydney, Australia e-mail: [email protected] University Politehnica of Bucharest, Bucharest, Romania e-mail: [email protected]@yahoo.com
Mihai Mihăilescu*
Affiliation:
University of Craiova, Craiova, Romania
Denisa Stancu-Dumitru
Affiliation:
University Politehnica of Bucharest, Bucharest, Romania e-mail: [email protected]@yahoo.com

Abstract

The asymptotic behavior of solutions to a family of Dirichlet boundary value problems, involving differential operators in divergence form, on a domain equipped with a Finsler metric is investigated. Solutions are shown to converge uniformly to the distance function to the boundary of the domain, which takes into account the Finsler norm involved in the equation. This implies that a well-known result in the analysis of problems modeling torsional creep continues to hold in this more general setting.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

F. M. and D. S-D. have been partially supported by CNCS-UEFISCDI grant no. PN-III-P1-1.1-TE-2019-0456.

References

Álvarez Paiva, J. C. and Durán, C., An introduction to finsler geometry . Notas de la Escuela Venezolana de Matématicas, Venezuela, 1998.Google Scholar
Alvino, A., Ferone, V., Trombetti, G., and Lions, P.-L., Convex symmetrization and applications. Ann. Inst. Henri Poincaré Anal. Non Linéaire 14(1997), 275293.Google Scholar
Bellettini, G. and Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25(1996), 537566.CrossRefGoogle Scholar
Belloni, M., Ferone, V., and Kawohl, B., Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. J. Appl. Math. Phys. (ZAMP) 54(2003), 771783.CrossRefGoogle Scholar
Belloni, M. and Kawohl, B., The pseudo- $p$ -Laplace eigenvalue problem and viscosity solutions as $p\to \infty$ . ESAIM Control Optim. Calc. Var. 10(2004), 2852.CrossRefGoogle Scholar
Belloni, M., Kawohl, B., and Juutinen, P., The $p$ -Laplace eigenvalue problem as $p\to \infty$ in a Finsler metric. J. Eur. Math. Soc. 8(2006), 123138.CrossRefGoogle Scholar
Bhattacharya, T., DiBenedetto, E., and Manfredi, J., Limits as $p\to \infty$ of ${\varDelta}_p{u}_p=f$ and related extremal problems . Rend. Sem. Mat. Univ. Politec. Torino 47(1991), 1568.Google Scholar
Bianchini, C. and Ciraolo, G., Wulff shape characterizations in overdetermined anisotropic elliptic problems. Commun. Part. Diff. Eq. 43(2018), 790820.CrossRefGoogle Scholar
Bocea, M. and Mihăilescu, M., On a family of inhomogeneous torsional creep problems. Proc. Am. Math. Soc. 145(2017), 43974409.CrossRefGoogle Scholar
Braides, A., G-convergence for beginners . Oxford University Press, Oxford, UK, 2002.CrossRefGoogle Scholar
Chipot, M., Elliptic equations: an introductory course, BAT—Birkhäuser Advanced Texts . Birkhäuser Verlag, Basel-Boston-Berlin, 2009.CrossRefGoogle Scholar
Cozzi, M., Farina, A., and Valdinoci, E., Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs. Adv. Math. 293(2016), 343381.CrossRefGoogle Scholar
Dal Maso, G., An introduction to Γ-convergence. In: Progress in nonlinear differential equations and their applications, Vol. 8, Birkäuser, Boston, MA, 1993.Google Scholar
De Giorgi, E., Sulla convergenza di alcune succesioni di integrali del tipo dell’area. Rend. Mat. 8(1975), 277294.Google Scholar
De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(1975), 842850.Google Scholar
Di Castro, A., Pérez-Llanos, M., and Urbano, J. M., Limits of anisotropic and degenerate elliptic problems. Commun. Pure Appl. Anal. 11(2012), 12171229.CrossRefGoogle Scholar
Fărcăşeanu, M. and Mihăilescu, M., On a family of torsional creep problems involving rapidly growing operators in divergence form. Proc. Roy. Soc. Edinb. Sect. A Math. 149(2019), 495510.CrossRefGoogle Scholar
Fukagai, N., Ito, M., and Narukawa, K., Limit as $p\to \infty$ of $p$ -Laplace eigenvalue problems and ${L}^{\infty }$ -inequality of Poincaré type. Differ. Integral Equ. 12(1999), 183206.Google Scholar
Ishibashi, T. and Koike, S., On fully nonlinear PDE’s derived from variational problems of ${L}^p$ norms. SIAM J. Math. Anal. 33(2001), 545569.CrossRefGoogle Scholar
Jost, J. and Li-Jost, X., Calculus of variations. Cambridge Studies in Advanced Mathematics, 64, Cambridge University Press, Cambridge, MA, 1998.Google Scholar
Juutinen, P., Lindqvist, P., and Manfredi, J. J., The $\infty$ -eigenvalue problem. Arch. Ration. Mech. Anal. 148(1999), 89105.CrossRefGoogle Scholar
Kachanov, L. M., The theory of creep . National Lending Library for Science and Technology, Boston Spa-Yorkshire-England, 1967.Google Scholar
Kachanov, L. M., Foundations of the theory of plasticity , Translated from the Russian 2nd revised ed., Vol. 12. North-Holland Series in Applied Mathematics and Mechanics, North-Holland Publishing Co, American Elsevier Publishing Co, Amsterdam–London–New York, 1971.Google Scholar
Kawohl, B., On a family of torsional creep problems. J. Reine Angew. Math. 410(1990), 122.Google Scholar
Li, Y. Y. and Nirenberg, L., The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton–Jacobi equations. Commun. Pure Appl. Math. 58(2005), 85146.CrossRefGoogle Scholar
Mihăilescu, M. and Pérez-Llanos, M., Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev Spaces. J. Math. Phys. 59(2018), article number 071513.CrossRefGoogle Scholar
Payne, L. E. and Philippin, G. A., Some applications of the maximum principle in the problem of torsional creep. SIAM J. Appl. Math. 33(1977), 446455.CrossRefGoogle Scholar
Pérez-Llanos, M. and Rossi, J. D., The limits as $p(x)\to \infty$ of solutions to the inhomogeneous Dirichlet problem of the $p(x)$ -Laplacian. Nonlinear Anal. 73(2010), 20272035.CrossRefGoogle Scholar
Struwe, M., Variational methods: applications to nonlinear partial differential equations and hamiltonian systems . Springer, Heidelberg, Germany, 1996.CrossRefGoogle Scholar
Willem, M., Analyse harmonique réelle . Hermann, Paris, 1995.Google Scholar