Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T15:14:34.515Z Has data issue: false hasContentIssue false

Cyclicity of elliptic curves modulo primes in arithmetic progressions

Published online by Cambridge University Press:  03 May 2021

Yıldırım Akbal
Affiliation:
Department of Mathematics, Atılım University, 06830 Gölbaşı, Ankara, Turkey e-mail: [email protected]
Ahmet M. Güloğlu*
Affiliation:
Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey
*

Abstract

We consider the reduction of an elliptic curve defined over the rational numbers modulo primes in a given arithmetic progression and investigate how often the subgroup of rational points of this reduced curve is cyclic.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbary, A. and Murty, V. K., An analogue of the Siegel-Walfisz theorem for the cyclicity of CM elliptic curves mod p. Indian J. Pure Appl. Math. 41(2010), no. 1, 2537.CrossRefGoogle Scholar
Avila, J. B., Galois representations of elliptic curves and abelian entanglements, Doctoral thesis, Leiden University, 2015.Google Scholar
Borosh, I., Moreno, C. J., and Porta, H., Elliptic curves over finite fields. II. Math. Comput. 29(1975), 951964.CrossRefGoogle Scholar
Cojocaru, A. C., On the cyclicity of the group of ${F}_p$ -rational points of non-CM elliptic curves . J. Number Theory 96(2002), 335350.CrossRefGoogle Scholar
Cojocaru, A. C., Cyclicity of CM elliptic curves modulo p. Trans. Amer. Math. Soc. 355(2003), no. 7, 26512662.CrossRefGoogle Scholar
Cojocaru, A. C., On the surjectivity of the Galois representations associated to non-CM elliptic curves. With an appendix by Kani, E.. Canad. Math. Bull. 48(2005), no. 1, 1631.CrossRefGoogle Scholar
Cojocaru, A. C. and Murty, M. R., Cyclicity of elliptic curves modulo $p$ and elliptic curve analogues of Linnik’s problem . Math. Ann. 330(2004), no. 3, 601625.CrossRefGoogle Scholar
Fouvry, E. and Iwaniec, H., Primes in arithmetic progressions. Acta Arith. 42(1983), no. 2, 197218.CrossRefGoogle Scholar
González-Jiménez, E. and Lozano-Robledo, Á., Elliptic curves with Abelian division fields. Math. Z. 283(2016), 835859.CrossRefGoogle Scholar
Graham, S. W. and Van der Kolesnik, G., Corput’s method of exponential sums . London Mathematical Society Lecture Note Series, 126, Cambridge University Press, Cambridge, MA, 1991.Google Scholar
Greaves, G., Sieves in number theory . In: 2001 Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 43, Springer-Verlag, Berlin, Germany, 2001.Google Scholar
Gupta, R. and Murty, M. R., Cyclicity and generation of points mod $p$ on elliptic curves . Invent. Math. 101(1990), 225235.CrossRefGoogle Scholar
Häberle, L., On cubic Galois field extensions. J. Number Theory 130(2010), 307317.CrossRefGoogle Scholar
Hasse, H., Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsche Akad. Wiss. 2(1950), 395.Google Scholar
Heath-Brown, D. R., Artin’s conjecture for primitive roots. Quart. J. Math. Oxford Ser. (2) 37(1986), no. 145, 2738.CrossRefGoogle Scholar
Hooley, C., On Artin’s conjecture. J. Reine Angew. Math. 225(1967), 209220.Google Scholar
Ivić, A., Two inequalities for the sum of divisor function. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. 7(1977), 1722.Google Scholar
Iwaniec, H., A new form of the error term in linear sieve. Acta Arith. 37(1980), 307320.CrossRefGoogle Scholar
Janusz, G. J., Algebraic number fields . 2nd ed., Graduate Studies in Mathematics, 7, American Mathematical Society, Providence, RI, 1996. x+276 pp.Google Scholar
Jones, N., Almost all elliptic curves are serre curves. Trans. Amer. Math. Soc. 362(2010), no. 3, 15471570.CrossRefGoogle Scholar
Lang, S. and Trotter, H., Primitive points on elliptic curves. Bull. Amer. Math. Soc. 83(1977), no. 2, 289292.CrossRefGoogle Scholar
Lang, S. A., Graduate texts in mathematics . Vol. 211. Revised 3rd ed., Springer-Verlag, New York, NY, 2002.Google Scholar
Lenstra, H. W., On Artin’s conjecture and Euclid’s algorithm in global fields. Invent. Math. 42(1977), 201224.CrossRefGoogle Scholar
Lenstra, H. W., Stevenhagen, P., and Moree, P., Character sums for primitive root densities. Math. Proc. Cambridge Philos. Soc. 157(2014), 489511.CrossRefGoogle Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative number theory. I. Classical theory . Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, Cambridge, MA, 2007. xviii+552 pp.Google Scholar
Moree, P., On primes in arithmetic progression having a prescribed primitive root. J. Number Theory 78(1999), 8598.CrossRefGoogle Scholar
Moree, P., On primes in arithmetic progression having a prescribed primitive root. II. Functiones et Approximatio 39(2008), 133144.Google Scholar
Murty, M. R., On Artin’s conjecture. J. Number Theory 16(1983), 147168.CrossRefGoogle Scholar
Murty, M. R. and Petersen, K. L., A Bombieri-Vinogradov theorem for all number fields. Trans. Amer. Math. Soc. 365(2013), no. 9, 49875032.Google Scholar
Neukirch, J., Algebraic number theory . Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by G. Harder. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322, Springer-Verlag, Berlin, Germany, 1999.CrossRefGoogle Scholar
Serre, J. P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(1972), 259331.CrossRefGoogle Scholar
Serre, J. P., Résumé des cours de 1977-1978, Annuaire du Collège de France (1978), 67–70 in Oeuvres. Vol. III (French) [Collected papers. Vol. III] 1972–1984, Springer-Verlag, Berlin, Germany, 1986.Google Scholar
Silverman, J. H., The arithmetic of elliptic curves . Graduate Texts in Mathematics, 106, Springer Verlag, NewYork, NY, 1986.CrossRefGoogle Scholar