Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:52:27.394Z Has data issue: false hasContentIssue false

1324- and 2143-avoiding Kazhdan–Lusztig immanants and k-positivity

Published online by Cambridge University Press:  14 May 2021

Sunita Chepuri*
Affiliation:
University of Michigan, CMCC, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109, USA
Melissa Sherman-Bennett
Affiliation:
University of California at Berkeley, Evans Hall, Berkeley, CA, USA e-mail: [email protected]

Abstract

Immanants are functions on square matrices generalizing the determinant and permanent. Kazhdan–Lusztig immanants, which are indexed by permutations, involve $q=1$ specializations of Type A Kazhdan–Lusztig polynomials, and were defined by Rhoades and Skandera (2006, Journal of Algebra 304, 793–811). Using results of Haiman (1993, Journal of the American Mathematical Society 6, 569–595) and Stembridge (1991, Bulletin of the London Mathematical Society 23, 422–428), Rhoades and Skandera showed that Kazhdan–Lusztig immanants are nonnegative on matrices whose minors are nonnegative. We investigate which Kazhdan–Lusztig immanants are positive on k-positive matrices (matrices whose minors of size $k \times k$ and smaller are positive). The Kazhdan–Lusztig immanant indexed by v is positive on k-positive matrices if v avoids 1324 and 2143 and for all noninversions $i< j$ of v, either $j-i \leq k$ or $v_j-v_i \leq k$ . Our main tool is Lewis Carroll’s identity.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author was partially supported by NSF RTG grant DMS-1745638. The second author was supported by NSF grant DGE-1752814.

References

Berenstein, A., Fomin, S., and Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(2005), no. 1, 152. http://doi.org/10.1215/S0012-7094-04-12611-9 CrossRefGoogle Scholar
Billey, S. C. and Warrington, G. S., Kazhdan–Lusztig polynomials for 321-hexagon-avoiding permutations. J. Algebraic Combin. 13(2001), no. 2, 111136.CrossRefGoogle Scholar
Björner, A. and Brenti, F., Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231, Springer, New York, 2005. http://doi.org/10.1007/3-540-27596-7 Google Scholar
Brosowsky, A., Chepuri, S., and Mason, A., Parametrizations of $k$ -nonnegative matrices: cluster algebras and $k$ -positivity tests . J. Combin. Theory Ser. A 174(2020), 105217. https://arxiv.org/pdf/1712.05037.pdf CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A., Totally nonnegative and oscillatory elements in semisimple groups. Proc. Amer. Math. Soc. 128(2000), no. 12, 37493759. http://doi.org/10.1090/S0002-9939-00-05487-3 Google Scholar
Goulden, I. P. and Jackson, D. M., Immanants of combinatorial matrices. J. Algebra 148(1992), no. 2, 305324. http://doi.org/10.1016/0021-8693(92)90196-S.CrossRefGoogle Scholar
Greene, C., Proof of a conjecture on immanants of the Jacobi–Trudi matrix. Linear Algebra Appl. 171(1992), 6579. http://doi.org/10.1016/0024-3795(92)90250-E Google Scholar
Haiman, M., Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc. 6(1993), no. 3, 569595. http://doi.org/10.2307/2152777 Google Scholar
Kazhdan, D. and Lusztig, G., Schubert varieties and Poincaré duality . In: Geometry of the Laplace operator (Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, American Mathematical Society, Providence, RI, 1980, pp. 185203. http://doi.org/10.1090/pspum/036 CrossRefGoogle Scholar
Lakshmibai, V. and Sandhya, B., Criterion for smoothness of Schubert varieties in Sl(n)/B . Proc. Indian Acad. Sci. Math. Sci. 100(1990), no. 1, 4552. http://doi.org/10.1007/BF02881113 CrossRefGoogle Scholar
Lusztig, G., Total positivity in reductive groups . In: Lie theory and geometry Progr. Math., 123, Birkhäuser, Boston, MA, 1994, pp. 531568. http://doi.org/10.1007/978-1-4612-0261-5_20 CrossRefGoogle Scholar
Pylyavskyy, P., Personal communication. Nov. 28, 2018.Google Scholar
Rhoades, B. and Skandera, M., Kazhdan–Lusztig immanants and products of matrix minors. J. Algebra 304(2006), no. 2, 793811. http://doi.org/10.1016/j.jalgebra.2005.07.017 CrossRefGoogle Scholar
Sjöstrand, J., Bruhat intervals as rooks on skew Ferrers boards. J. Combin. Theory Ser. A 114(2007), no. 7, 11821198. http://doi.org/10.1016/j.jcta.2007.01.001 Google Scholar
Skandera, M., On the dual canonical and Kazhdan–Lusztig bases and 3412-, 4231-avoiding permutations. J. Pure Appl. Algebra 212(2008), no. 5, 10861104. http://doi.org/10.1016/j.jpaa.2007.09.007 Google Scholar
Stembridge, J. R., Immanants of totally positive matrices are nonnegative. Bull. Lond. Math. Soc. 23(1991), no. 5, 422428. http://doi.org/10.1112/blms/23.5.422 CrossRefGoogle Scholar
Stembridge, J. R., Some conjectures for immanants. Canad. J. Math. 44(1992), no. 5, 10791099. http://doi.org/10.4153/CJM-1992-066-1 Google Scholar
Tenner, B. E., Pattern avoidance and the Bruhat order. J. Combin. Theory Ser. A 114(2007), no. 5, 888905. http://doi.org/10.1016/j.jcta.2006.10.003 CrossRefGoogle Scholar