Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T10:34:19.492Z Has data issue: false hasContentIssue false

WHITE SPRUCE AND THE SPRUCE BUDWORM: DEFINING THE PHENOLOGICAL WINDOW OF SUSCEPTIBILITY

Published online by Cambridge University Press:  31 May 2012

Robert K. Lawrence
Affiliation:
USDA Forest Service, North Central Forest Experiment Station, 1407 South Harrison Road, Room 220, East Lansing, Michigan, USA 48823
William J. Mattson
Affiliation:
USDA Forest Service, North Central Forest Experiment Station, 1407 South Harrison Road, Room 220, East Lansing, Michigan, USA 48823
Robert A. Haack
Affiliation:
USDA Forest Service, North Central Forest Experiment Station, 1407 South Harrison Road, Room 220, East Lansing, Michigan, USA 48823
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Synchrony of insect and host tree phenologies has often been suggested as an important factor influencing the susceptibility of white spruce, Picea glauca (Moench) Voss, and other hosts to the spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). We evaluated this hypothesis by caging several cohorts of spruce budworm larvae on three white spruce populations at different phenological stages of the host trees, and then comparing budworm performance with host phenology and variation of 13 foliar traits. The beginning of the phenological window of susceptibility in white spruce occurs several weeks prior to budbreak, and the end of the window is sharply defined by the end of shoot growth. Performance was high for the earliest budworm cohorts that we tested. These larvae began feeding 3–4 weeks prior to budbreak and completed their larval development prior to the end of shoot elongation. Optimal synchrony occurred when emergence preceded budbreak by about 2 weeks. Larval survival was greater than 60% for individuals starting development 1–3 weeks prior to budbreak, but decreased to less than 10% for those starting development 2 or more weeks after budbreak and thus completing development after shoot elongation ceased. High performance by the budworm was most strongly correlated with high levels of foliar nitrogen, phosphorous, potassium, copper, sugars, and water and low levels of foliar calcium, phenolics, and toughness. These results suggest that advancing the usual phenological window of white spruce (i.e. advancing budbreak prior to larval emergence) or retarding budworm phenology can have a large negative effect on the spruce budworm’s population dynamics.

Résumé

Le synchronisme de la phénologie d’un insecte et de celle de son hôte est souvent invoqué pour expliquer la sensibilité de l’épinette blanche, Picea glauca (Moench) Voss, et d’autres arbres hôtes à la Tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clemens) (Lepidoptera : Tortricidae). Nous avons étudié la validité de cette hypothèse en encageant plusieurs cohortes de larves de la tordeuse sur trois populations d’épinettes blanches à divers stades phénologiques; nous avons ensuite observé la performance des tordeuses en fonction de la phénologie des hôtes et en fonction de 13 caractéristiques foliaires. Le début de la période de sensibilité de l’épinette se produit plusieurs semaines avant l’éclosion des bourgeons et la fin de la période arrive abruptement, à la fin de la croissance des rameaux. La performance s’est avérée très bonne chez les cohortes les plus hâtives de tordeuses que nous avons testées. Les larves ont commencé à se nourrir 3–4 semaines avant l’éclosion des bourgeons et avaient complété leur développement avant la fin de la croissance des rameaux. Le synchronisme était optimal lorsque l’émergence précédait l’éclosion des bourgeons d’environ 2 semaines. La survie des larves s’est avérée supérieure à 60% chez les individus qui ont commencé à se développer 1–3 semaines avant l’éclosion des bourgeons, mais a été estimée à moins de 10% chez les individus qui ont commencé à se développer 2 semaines ou plus après l’éclosion des bourgeons et qui ont donc complété leur développement après la période d’élongation des rameaux. La meilleure performance des tordeuses était en forte corrélation avec des concentrations foliaires élevées d’azote, de phosphore, de potassium, de cuivre, de sucres et d’eau, avec de faibles concentrations foliaires de calcium et de produits phénolés et avec une coriacité peu élevée. Ces résultats semblent indiquer que le déplacement de la fenêtre phénologique habituelle de l’épinette blanche pour qu’elle couvre une période plus précoce (par manipulation de la période d’éclosion des bourgeons de façon à ce qu’elle se produise avant l’émergence), ou le retard de la phénologie de la tordeuse pourraient avoir des effets négatifs importants sur la dynamique des populations de tordeuses.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

References

Ågren, G.I. 1985. Theory for growth of plants derived from the nitrogen productivity concept. Physiologia Plantarum 64: 1728.CrossRefGoogle Scholar
Albert, P.J., and Bauce, E.. 1994. Feeding preferences of fourth- and sixth-instar spruce budworm (Lepidoptera: Tortricidae) larvae for foliage extracts from young and old balsam fir hosts. Environmental Entomology 23: 645653.CrossRefGoogle Scholar
Alford, A.R., and Bentley, M.D.. 1986. Citrus limonoids as potential antifeedants for the spruce budworm. Journal of Economic Entomology 79: 3538.CrossRefGoogle Scholar
Alford, A.R., and Holmes, J.A.. 1986. Sublethal effects of carbaryl, aminocarb, fenitrothion, and Bacillus thuringiensis on the development and fecundity of the spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology 79: 3134.CrossRefGoogle Scholar
Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology 5: 388396.CrossRefGoogle Scholar
Bauce, E., and Hardy, Y.. 1988. Effects of drainage and severe defoliation on the rawfiber content of balsam fir needles and growth of the spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology 17: 671674.CrossRefGoogle Scholar
Bauer, L.S., and Nordin, G.L.. 1988. Pathogenicity of Nosema fumiferanae (Thomson) (Microsporida) in spruce budworm, Choristoneura fumiferana (Clemens), and implications of diapause conditions. The Canadian Entomologist 120: 221229.CrossRefGoogle Scholar
Bauer, L.S., and Nordin, G.L.. 1989. Effect of Nosema fumiferanae (Microsporida) on fecundity, fertility, and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environmental Entomology 18: 261265.CrossRefGoogle Scholar
Bean, J.L., and Batzer, H.O.. 1957. Mean head width for spruce budworm larval instars in Minnesota and associated data. Journal of Economic Entomology 50: 499.CrossRefGoogle Scholar
Beckwith, R.C., and Burnell, D.G.. 1982. Spring larval dispersal of the western spruce budworm (Lepidoptera: Tortricidae) in north-central Washington. Environmental Entomology 11: 828832.CrossRefGoogle Scholar
Blais, J.R. 1952. The relationship of the spruce budworm (Choristoneura fumiferana, Clem.) to the flowering condition of balsam fir (Abies balsamea (L.) Mill.). Canadian Journal of Zoology 30: 129.CrossRefGoogle Scholar
Blais, J.R. 1957. Some relationships of the spruce budworm, Choristoneura fumiferana (Clem.), to black spruce, Picea mariana (Moench) Voss. Forestry Chronicle 33: 364372.CrossRefGoogle Scholar
Blais, J.R. 1983. Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Canadian Journal of Forest Research 13: 539547.CrossRefGoogle Scholar
Blake, E.A., and Wagner, M.R.. 1986. Foliage age as a factor in food utilization by the western spruce budworm, Choristoneura occidentalis. Great Basin Naturalist 46: 169172.Google Scholar
Blum, B.M. 1988. Variation in the phenology of bud flushing in white and red spruce. Canadian Journal of Forest Research 18: 315319.CrossRefGoogle Scholar
Brewer, J.W., Capinera, J.L., Deshon, R.E. Jr., and Walmsley, M.L.. 1985. Influence of foliar nitrogen levels on survival, development, and reproduction of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae). The Canadian Entomologist 117: 2332.CrossRefGoogle Scholar
Brewer, J.W., O'Neill, K.M., and Deshon, R.E. Jr., 1987. Effects of artificially altered foliar nitrogen levels on development and survival of young instars of western spruce budworm, Choristoneura occidentalis Freeman. Journal of Applied Entomology 104: 121130.CrossRefGoogle Scholar
Burke, J.M. 1980. A Survey of Micro-organisms Infecting a Spruce Budworm Population. Canadian Forestry Service, Forest Pest Management Institute, Information Report FPM–X–37: 21 pp.Google Scholar
Burr, K.E., and Clancy, K.M.. 1993. Douglas-fir needle anatomy in relation to western spruce budworm (Lepidoptera: Tortricidae) herbivory. Journal of Economic Entomology 86: 9399.CrossRefGoogle Scholar
Cates, R.G., Henderson, C.B., and Redak, R.A.. 1987. Responses of the western spruce budworm to varying levels of nitrogen and terpenes. Oecologia 73: 312316.CrossRefGoogle ScholarPubMed
Cates, R.G., Redak, R., and Henderson, C.B.. 1983 a. Natural product defensive chemistry of Douglas-fir, western spruce budworm success, and forest management practices. Zeitschrift fuer angewandte Entomologie 96: 173182.CrossRefGoogle Scholar
Cates, R.G., Redak, R., and Henderson, C.B.. 1983 b. Patterns in defensive natural product chemistry: Douglas-fir and western spruce budworm interactions. pp. 319in Hedin, P.A. (Ed.), Plant Resistance to Insects. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
Chrosciewicz, Z. 1986. Foliar moisture content variations in four coniferous tree species of central Alberta. Canadian Journal of Forest Research 16: 157162.CrossRefGoogle Scholar
Clancy, K.M. 1991. Western spruce budworm response to different moisture levels in artificial diets. Forest Ecology and Management 39: 223235.CrossRefGoogle Scholar
Clancy, K.M. 1992 a. The role of sugars in western spruce budworm nutritional ecology. Ecological Entomology 17: 189197.CrossRefGoogle Scholar
Clancy, K.M. 1992b. Response of western spruce budworm (Lepidoptera: Tortricidae) to increased nitrogen in artificial diets. Environmental Entomology 21: 331344.CrossRefGoogle Scholar
Clancy, K.M., and King, R.M.. 1993. Defining the western spruce budworm's nutritional niche with response surface methodology. Ecology 74: 442454.CrossRefGoogle Scholar
Clancy, K.M., Wagner, M.R., and Tinus, R.W.. 1988. Variation in host foliage nutrient concentrations in relation to western spruce budworm herbivory. Canadian Journal of Forest Research 18: 530539.CrossRefGoogle Scholar
Cleary, B.D., and Waring, R.H.. 1969. Temperature: Collection of data and its analysis for the interpretation of plant growth and distribution. Canadian Journal of Botany 47: 167173.CrossRefGoogle Scholar
Coley, P.D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53: 209233.CrossRefGoogle Scholar
Crummey, H.R., and Otvos, I.S.. 1980. Biology and Habits of the Eastern Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), in Newfoundland. Environment Canada, Forestry Service, Information Report N–X–181: 33 pp.Google Scholar
DeBolt, D.C. 1980. Multielement emission spectroscopic analysis of plant tissue using DG argon plasma source. Journal of the Association of Official Analytical Chemists 63: 802805.Google Scholar
Dewar, R.C., and Watt, A.D.. 1992. Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia 89: 557559.CrossRefGoogle ScholarPubMed
Dimond, J.B. 1985. Considerations in timing insecticidal sprays on different host trees of the spruce budworm. pp. 409in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworms Research. Proceedings CANUSA Spruce Budworms Research Symposium, Canadian Forestry Service, Ottawa, ON.Google Scholar
Du Merle, P. 1988. Phenological resistance of oaks to the green oak leafroller, Tortrix viridana (Lepidoptera: Tortricidae). pp. 215226in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects—Search for Pattern. Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Du Merle, P., Brunet, S., and Cornic, J.-F.. 1992. Polyphagous potentialities of Choristoneura murinana (Hb.) (Lep., Tortricidae): A “monophagous” folivore extending its host range. Journal of Applied Entomology 113: 1840.CrossRefGoogle Scholar
Eidt, D.C., and Cameron, M.D.. 1971. Delayed budbreak and spruce budworm survival. Canadian Forestry Service, Bi-Monthly Research Notes 27(4): 2829.Google Scholar
Eidt, D.C., and Little, C.H.A.. 1970. Insect control through induced host-insect asynchrony: A progress report. Journal of Economic Entomology 63: 19661968.CrossRefGoogle Scholar
Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565581.CrossRefGoogle Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Recent Advances in Phytochemistry 10: 140.Google Scholar
Greenbank, D.O. 1956. The role of climate and dispersal in the initiation of outbreaks of the spruce budworm in New Brunswick. I. The role of climate. Canadian Journal of Zoology 34: 453476.CrossRefGoogle Scholar
Greenbank, D.O. 1963. Host species and the spruce budworm. pp. 219–223 in Morris, R.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Memoirs of the Entomological Society of Canada 31: 332 pp.Google Scholar
Hagen, R.H., and Chabot, J.F.. 1986. Leaf anatomy of maples (Acer) and host use by Lepidoptera larvae. Oikos 47: 335345.CrossRefGoogle Scholar
Hansen, R.W., and Dimond, J.B.. 1982. The Feeding Biology of Spruce Budworm on Several Hosts with Reference to Timing of Insecticidal Sprays. University of Maine at Orono, Life Science and Agriculture Experiment Station, Miscellaneous Report 266: 19 pp.Google Scholar
Hanson, J.B. 1984. The functions of calcium in plant nutrition. pp. 149208in Tinker, P.B., and Läuchli, A. (Eds.), Advances in Plant Nutrition. Vol. 1. Praeger Scientific, New York, NY.Google Scholar
Hardy, Y., Mainville, M., and Schmitt, D.M.. 1986. An Atlas of Spruce Budworm Defoliation in Eastern North America, 1938–80. USDA Forest Service, Miscellaneous Publication 1449: 52 pp.Google Scholar
Harvey, G.T. 1974. Nutritional studies of eastern spruce budworm (Lepidoptera: Tortricidae). I. Soluble sugars. The Canadian Entomologist 106: 353365.CrossRefGoogle Scholar
Heron, R.J. 1965. The role of chemotactic stimuli in the feeding behavior of spruce budworm larvae on white spruce. Canadian Journal of Zoology 43: 247269.CrossRefGoogle Scholar
Huang, P. 1975. Über die bedeutung anatomischer merkmale der fichtennadel (Picea excelsa Link) für ihre eignung als nähr- und brutsubstrat nadelfressender insekten. Zeitschrift fur angewandte Entomologie 77: 264269.CrossRefGoogle Scholar
Huang, P., and Führer, E.. 1979. Zur nahrungsqualität von fichtennadeln für forstliche schadinsekten. 12. Variabilität der nadelhautstruktur. Zeitschrift fur angewandte Entomologie 88: 231245.CrossRefGoogle Scholar
Hunter, A.F., and Lechowicz, M.J.. 1992. Foliage quality changes during canopy development of some northern hardwood trees. Oecologia 89: 316323.CrossRefGoogle ScholarPubMed
Hunter, M.D. 1992. A variable insect-plant interaction: The relationship between tree budburst phenology and population levels of insect herbivores among trees. Ecological Entomology 16: 9195.CrossRefGoogle Scholar
Jones, J.B. Jr., and Case, V.W.. 1990. Sampling, handling, and analyzing plant tissue samples. pp. 389427in Westerman, R.L. (Ed.), Soil Testing and Plant Analysis, 3rd ed. Soil Science Society of America, Madison, WI.Google Scholar
LaTour, S.A., and Miniard, P.W.. 1983. The misuse of repeated measures analysis in marketing research. Journal of Marketing Research 20: 4557.CrossRefGoogle Scholar
Lavender, D.P., Sweet, G.B., Zaerr, J.B., and Hermann, R.K.. 1973. Spring shoot growth in Douglas-fir may be initiated by gibberellins exported from the roots. Science 182: 838839.CrossRefGoogle ScholarPubMed
Lawrence, R.K. 1990. Phenological Variation in the Susceptibility of White Spruce to the Spruce Budworm. Ph.D. dissertation, Department of Entomology, Michigan State University, East Lansing, MI. 131 pp.Google Scholar
Leather, S.R. 1986. The effect of neonatal starvation on the growth, development and survival of larvae of the pine beauty moth, Panolis flammea (D & S). Oecologia 71: 9093.CrossRefGoogle ScholarPubMed
Lopushinsky, W., and Max, T.A.. 1990. Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New Forests 4: 107124.CrossRefGoogle Scholar
Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11: 119161.CrossRefGoogle Scholar
Mattson, W.J., Birr, B.A., and Lawrence, R.K.. 1996. Staminate flowering and tree phenology affect the performance of the spruce budworm. pp. 97103in Mattson, W.J., Niemelä, P., and Rousi, M. (Eds.), Dynamics of Forest Herbivory: Quest for Pattern and Principle. USDA Forest Service, North Central Forest Experiment Station, General Technical Report NC–183.Google Scholar
Mattson, W.J., Haack, R.A., Lawrence, R.K., and Slocum, S.S.. 1991. Considering the nutritional ecology of the spruce budworm in its management. Forest Ecology and Management 39: 183210.CrossRefGoogle Scholar
Mattson, W.J., Lorimer, N., and Leary, R.A.. 1982. Role of plant variability (trait vector dynamics and diversity) in plant/herbivore interactions. pp. 295303in Heybroek, H.M., Stephan, B.R., and von Weissenberg, K. (Eds.), Resistance to Diseases and Pests in Forest Trees. Pudoc, Wageningen, The Netherlands.Google Scholar
Mattson, W.J., and Scriber, J.M.. 1987. Nutritional ecology of insect folivores of woody plants: Nitrogen, water, fiber, and mineral considerations. pp. 105146in Slansky, F. Jr., and Rodriguez, J.G. (Eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York, NY.Google Scholar
Mattson, W.J., Simmons, G.A., and Witter, J.A.. 1988. The spruce budworm in eastern North America. pp. 309330in Berryman, A.A. (Ed.), Dynamics of Forest Insect Populations: Patterns, Causes, Implications. Plenum Press, New York, NY.CrossRefGoogle Scholar
Mattson, W.J., Slocum, S.S., and Koller, C.N.. 1983. Spruce budworm (Choristoneura fumiferana) performance in relation to foliar chemistry of its host plants. pp. 5565in Talerico, R.L., and Montgomery, M. (Eds.), Forest Defoliator – Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE–85.Google Scholar
McGugan, B.M. 1954. Needle-mining habits and larval instars of the spruce budworm. The Canadian Entomologist 86: 439454.CrossRefGoogle Scholar
McIntyre, G.I. 1987. The role of water in the regulation of plant development. Canadian Journal of Botany 65: 12871298.CrossRefGoogle Scholar
McLaughlin, B.M. 1986. Performance of the Spruce Budworm, Choristoneura fumiferana, in Relation to Dietary and Foliar Levels of Sugar and Nitrogen. M.S. thesis, Department of Entomology, Michigan State University, East Lansing, MI. 86 pp.Google Scholar
McLean, J.A., Laks, P., and Shore, T.L.. 1983. Comparisons of elemental profiles of the western spruce budworm reared on three host foliages and artificial medium. pp. 3340in Talerico, R.L., and Montgomery, M. (Eds.), Forest Defoliator – Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE–85.Google Scholar
Miller, C.A. 1957. A technique for estimating the fecundity of natural populations of the spruce budworm. Canadian Journal of Zoology 35: 113.CrossRefGoogle Scholar
Miller, C.A. 1958. The measurement of spruce budworm populations and mortality during the first and second larval instars. Canadian Journal of Zoology 36: 409422.CrossRefGoogle Scholar
Miller, C.A., Eidt, D.C., and McDougall, G.A.. 1971. Predicting spruce budworm development. Canadian Forestry Service, Bi-Monthly Research Notes 27(5): 3334.Google Scholar
Morris, R.F., and Miller, C.A.. 1954. The development of life tables for the spruce budwonn. Canadian Journal of Zoology 32: 283301.CrossRefGoogle Scholar
Morrison, D.F. 1976. Multivariate Statistical Methods, 2nd ed. McGraw-Hill, New York, NY. 415 pp.Google Scholar
Neuvonen, S., and Niemelä, P.. 1991. Do differences in inducible resistance explain the population dynamics of birch and pine defoliators? pp. 103112in Baranchikov, Y.N., Mattson, W.J., Hain, F.P., and Payne, T.L. (Eds.), Forest Insect Guilds: Patterns of Interaction with Host Trees. USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE–153.Google Scholar
Nienstaedt, H. 1969. White spruce seed source variation and adaptation to 14 planting sites in northeastern United States and Canada. pp. 183194in Proceedings, Committee on Forest Tree Breeding in Canada (11th Meeting).Google Scholar
Nienstaedt, H. 1985. Inheritance and correlations of frost injury, growth, flowering, and cone characteristics in white spruce, Picea glauca (Moench) Voss. Canadian Journal of Forest Research 15: 498504.CrossRefGoogle Scholar
Nienstaedt, H., and King, J.P.. 1970. Breeding for delayed budbreak in Picea glauca (Moench) Voss—Potential frost avoidance and growth gains. pp. 6180in Proceedings, FAO/IUFRO 2nd World Consultation on Forest Tree Breeding. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Price, P.W. 1984. Insect Ecology, 2nd ed. John Wiley & Sons, New York, NY. 607 pp.Google Scholar
Quiring, D.T. 1992. Rapid change in suitability of white spruce for a specialist herbivore, Zeiraphera canadensis, as a function of leaf age. Canadian Journal of Zoology 70: 21322138.CrossRefGoogle Scholar
Quiring, D.T. 1994. Influence of inter-tree variation in time of budburst of white spruce on herbivory and the behaviour and survivorship of Zeiraphera canadensis. Ecological Entomology 19: 1725.CrossRefGoogle Scholar
Ramachandran, R., Raffa, K.F., Miller, M.J., Ellis, D.D., and McCown, B.H.. 1993. Behavioral responses and sublethal effects of spruce budworm (Lepidoptera: Tortricidae) and fall webworm (Lepidoptera: Arctiidae) larvae to Bacillus thuringiensis CrylA(a) toxin in diet. Environmental Entomology 22: 197211.CrossRefGoogle Scholar
Rao, C.R. 1973. Linear Statistical Inference and Its Applications, 2nd ed. John Wiley & Sons, New York, NY. 625 pp.CrossRefGoogle Scholar
Raske, A.G. 1985. Collapsing budworm populations. pp. 141142in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworms Research. Proceedings CANUSA Spruce Budworms Research Symposium, Canadian Forestry Service, Ottawa, ON.Google Scholar
Raupp, M.J. 1985. Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecological Entomology 10: 7379.CrossRefGoogle Scholar
Raupp, M.J., Werren, J.H., and Sadof, C.S.. 1988. Effects of short-term phenological changes in leaf suitability on the survivorship, growth, and development of gypsy moth (Lepidoptera: Lymantriidae) larvae. Environmental Entomology 17: 316319.CrossRefGoogle Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. The Canadian Entomologist 119: 717728.CrossRefGoogle Scholar
Régnière, J. 1990. Diapause termination and changes in thermal responses during postdiapause development in larvae of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology 36: 727735.CrossRefGoogle Scholar
Régnière, J., and Fletcher, R.M.. 1983. Direct measurement of spruce budworm (Lepidoptera: Tortricidae) larval dispersal in forest stands. Environmental Entomology 12: 15321538.CrossRefGoogle Scholar
Reichenbach, N.G., and Stairs, G.R.. 1984. Response of the western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), to temperature: The stochastic nature of developmental rates and diapause termination. Environmental Entomology 13: 15491556.CrossRefGoogle Scholar
Retnakaran, A. 1983. Spectrophotometric determination of larval ingestion rates in the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist 115: 3140.CrossRefGoogle Scholar
Royama, T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecological Monographs 54: 429462.CrossRefGoogle Scholar
SAS Institute Inc. 1988. SAS/STAT User's Guide, Release 6.03 ed. SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Schönherr, J. 1980. Ausbreitung des Europäischen tannentriebwicklers, Choristoneura murinana Hb. (Lepidoptera: Tortricidae). pp. 128133in Berryman, A.A., and Safranyik, L. (Eds.), Proceedings, 2nd IUFRO Conference on Dispersal of Forest Insects: Evaluation, Theory and Management Implications. Washington State University, Cooperative Extension Service, Pullman, WA.Google Scholar
Scriber, J.M. 1978. The effects of larval feeding specialization and plant growth form on the consumption and utilization of plant biomass and nitrogen: An ecological consideration. Entomologia Experimentalis et Applicata 24: 694710.CrossRefGoogle Scholar
Scriber, J.M. 1984 a. Nitrogen nutrition of plants and insect invasion. pp. 441460in Hauck, R.D. (Ed.), Nitrogen in Crop Production. American Society of Agronomy, Madison, WI.Google Scholar
Scriber, J.M. 1984 b. Host-plant suitability. pp. 159202in Bell, W.J., and Cardé, R.T. (Eds.), Chemical Ecology of Insects. Sinauer Associates, Sunderland, MA.CrossRefGoogle Scholar
Scriber, J.M., and Slansky, F. Jr., 1981. The nutritional ecology of immature insects. Annual Review of Entomology 26: 183211.CrossRefGoogle Scholar
Shaw, G.G., and Little, C.H.A.. 1973. Dispersal of second instar spruce budworm. Canadian Forestry Service, Bi-Monthly Research Notes 29(5): 3031.Google Scholar
Shepherd, R.F. 1985. A theory on the effects of diverse host-climatic environments in British Columbia on the dynamics of western spruce budworm. pp. 6070in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworms Research. Proceedings CANUSA Spruce Budworms Research Symposium, Canadian Forestry Service, Ottawa, ON.Google Scholar
Shepherd, R.F. 1992. Relationships between attack rates and survival of western spruce budworm, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae) and bud development of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco. The Canadian Entomologist 124: 347358.CrossRefGoogle Scholar
Shepherd, R.F. 1994. Management strategies for forest insect defoliators in British Columbia. Forest Ecology and Management 68: 303324.CrossRefGoogle Scholar
Strunz, G.M., Giguère, P., and Thomas, A.W.. 1986. Synthesis of pungenin, a foliar constituent of some spruce species, and investigation of its efficacy as a feeding deterrent for spruce budworm [Choristoneura fumiferana (Clem.)]. Journal of Chemical Ecology 12: 251260.CrossRefGoogle ScholarPubMed
Thomas, A.W. 1976. Effects of Temperature on Emergence of Second-instar Spruce Budworm Larvae. Canadian Forestry Service, Maritimes Forest Research Centre, Information Report M–X–60: 8 pp.Google Scholar
Thomas, A.W. 1983. Foliage consumption by 6th-instar spruce budworm larvae, Choristoneura fumiferana (Clem.), feeding on balsam fir and white spruce. pp. 4748in Talerico, R.L., and Montgomery, M. (Eds.), Forest Defoliator – Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE–85.Google Scholar
Thomas, A.W. 1987. The effect of age of current-year shoots of Picea glauca on survival, development time, and feeding efficiency of 6th-instar larvae of Choristoneura fumiferana. Entomologia Experimentalis et Applicata 43: 251260.CrossRefGoogle Scholar
Thomas, A.W. 1989. Food consumption and utilization by 6th-instar larvae of spruce budworm, Choristoneura fumiferana: A comparison on three Picea (spruce) species. Entomologia Experimentalis et Applicata 52: 205214.CrossRefGoogle Scholar
Thomson, A.J. 1979. Evaluation of Key Biological Relationships of Western Budworm and its Host Trees. Canadian Forestry Service, Pacific Forest Research Centre, Information Report BC–X–186: 19 pp.Google Scholar
Thomson, A.J., Shepherd, R.F., Harris, J.W.E., and Silversides, R.H.. 1984. Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia. The Canadian Entomologist 116: 375381.CrossRefGoogle Scholar
Vincent, J.F.V. 1982. The mechanical design of grass. Journal of Materials Science 17: 856860.CrossRefGoogle Scholar
Volney, W.J.A. 1985. Comparative population biologies of North American spruce budworms. pp. 7184in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworms Research. Proceedings CANUSA Spruce Budworms Research Symposium, Canadian Forestry Service, Ottawa, ON.Google Scholar
Volney, W.J.A., and Cerezke, H.F.. 1992. The phenology of white spruce and the spruce budworm in northern Alberta. Canadian Journal of Forest Research 22: 198205.CrossRefGoogle Scholar
Volney, W.J.A., Waters, W.E., Akers, R.P., and Liebhold, A.M.. 1983. Variation in spring emergence patterns among western Choristoneura spp. (Lepidoptera: Tortricidae) populations in southern Oregon. The Canadian Entomologist 115: 199209.CrossRefGoogle Scholar
Wagner, M.R. 1988. Induced defenses in ponderosa pine against defoliating insects. pp. 141155in Mattson, W.J., Levieux, J., and Bernard-Dagan, C. (Eds.), Mechanisms of Woody Plant Defenses Against Insects—Search for Pattern. Springer-Verlag, New York, NY.CrossRefGoogle Scholar
Wagner, M.R., and Blake, E.A.. 1983. Western spruce budworm consumption—Effects of host species and foliage chemistry. pp. 4954in Talerico, R.L., and Montgomery, M. (Eds.), Forest Defoliator – Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA Forest Service, Northeastern Forest Experiment Station, General Technical Report NE–85.Google Scholar
Watt, A.D. 1987. The effect of shoot growth stage of Pinus contorta and Pinus sylvestris on the growth and survival of Panolis flammea larvae. Oecologia 72: 429433.CrossRefGoogle ScholarPubMed
Watt, A.D. 1992. The influence of pine shoot phenology on the survival of pine beauty moth (Panolis flammea) larvae on different pine provenances. Forest Ecology and Management 47: 8794.CrossRefGoogle Scholar
White, T.C.R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63: 90105.CrossRefGoogle Scholar
Wilson, G.G. 1977. Observations on the incidence rates of Nosema fumiferanae (Microsporida) in a spruce budworm, Choristoneura fumiferana, (Lepidoptera: Tortricidae) population. Proceedings of the Entomological Society of Ontario 108: 144145.Google Scholar
Winer, B.J. 1971. Statistical Principles in Experimental Design, 2nd ed. McGraw-Hill, New York, NY. 907 pp.Google Scholar
Wright, J.W., Nienstaedt, H., Lemmien, W.A., Bright, J.N., Day, M.W., and Sajdak, R.L.. 1977. Better White Spruce for Michigan. Michigan State University, Agricultural Experiment Station, Research Report 316: 8 pp.Google Scholar