Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T15:07:41.706Z Has data issue: false hasContentIssue false

VICARIANCE EVENTS IN THE BIOGEOGRAPHICAL HISTORY OF PANSCOPUS SCHÖNHERR WEEVILS IN NORTH AMERICA (COLEOPTERA: CURCULIONIDAE: ENTIMINAE)

Published online by Cambridge University Press:  31 May 2012

T.G. Spanton
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Abstract

A phylogenetic hypothesis of relationships among the species of the broad-nosed weevil genus Panscopus Schönherr indicates sister-taxon relationships between pairs of species, and pairs of ancestral lineages, which today exhibit disjunctions between their geographical distributions. The range disjunctions in these sister lineages appear to correlate with known geological or palaeoecological events. These correlates suggest dates of later Eocene to Miocene for some branching points in the phylogeny. These observations are consistent with the hypothesis that one or more ancestral form(s) of Panscopus were extant by the Eocene or earlier, and that most of the cladogenesis in the history of this genus occurred likely in middle to late Tertiary times. These hypotheses, in turn, suggest that adelognathan weevils must be a much older group than the oldest known representative fossils would suggest (Eocene), and that they likely arose during the Mesozoic.

Résumé

Une hypothèse phylogénétique sur les relations entre les espèces de charançons du genre Panscopus Schönherr indique l’existence de liens de parenté entre des paires d’espèces et des paires de lignées ancestrales qui ont aujourd’hui des répartitions géographiques bien séparées. L’éloignement entre ces lignées soeurs semble en corrélation avec des événements géologiques ou paléoécologiques connus. Ces relations indiquent que certains embranchements dans l’arbre phylogénique se seraient produits entre la fin de l’Éocène et la Miocène. Ces observations supportent l’hypothèse selon laquelle une ou plusieurs formes ancestrales de Panscopus étaient déjà présentes à l’Éocène ou même avant, et selon laquelle la cladogénènse au cours de l’histoire du genre s’est produite probablement entre le milieu et la fin du Tertiaire. Ces hypothèses indiquent à leur tour que les charançons adélognathes sont probablement un groupe plus ancien que ne le permettent de croire les fossiles représentatifs les plus vieux que nous connaissions (Éocène) et que le groupe existe probablement depuis le Mésozoïque.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R.T. 1983. Distribution patterns among arthropods of the North Temperate deciduous forest biota. Annals of the Missouri Botanical Garden 70: 616628.CrossRefGoogle Scholar
Askevold, I.S. 1988. The genus Neohaemonia Székessy in North America (Coleoptera: Chrysomelidae: Donaciinae): Systematics, reconstructed phylogeny, and geographical history. Transactions of the American Entomological Society 113: 360430.Google Scholar
Axelrod, D.I., and Raven, P.H.. 1985. Origins of the Cordilleran flora. Journal of Biogeography 12: 2147.Google Scholar
Ball, G.E., and Nègre, J.. 1972. The taxonomy of the Nearctic species of the genus Calathus Bonelli (Coleoptera: Carabidae: Agonini). Transactions of the American Entomological Society 98: 412533.Google Scholar
Crowson, R.A. 1981. The Biology of the Coleoptera. Academic Press, New York, NY.Google Scholar
Hallam, A. 1981. Relative importance of plate movement, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. pp. 303–330 in Nelson, G., and Rosen, D.E. (Eds.), Vicariance Biogeography: A Critique. Columbia University Press, New York, NY. 593 pp.Google Scholar
Hamilton, W. 1983. Cretaceous and Cenozoic history of the northern continents. Annals of the Missouri Botanical Garden 70: 440458.Google Scholar
Humphries, C.J., and Parenti, L.R.. 1986. Cladistic Biogeography. Clarendon Press, Oxford. 98 pp.Google Scholar
Lafontaine, J.D. 1981. Classification and phylogeny of the Euxoa detersa group (Lepidoptera: Noctuidae). Quaestiones Entomologicae 17: 1120.Google Scholar
Liebherr, J.K. 1991. A general area cladogram for montane Mexico based on distributions in the platynine genera Elliptoleus and Calathus (Coleoptera: Carabidae). Proceedings of the Entomological Society of Washington 93: 390406.Google Scholar
Matthews, J.V. Jr., 1979. Tertiary and Quaternary environments: Historical background for an analysis of the Canadian insect fauna. pp. 31–86 in Danks, H.V. (Ed.), Canada and its Insect Fauna. Memoirs of the Entomological Society of Canada 108: 573 pp.Google Scholar
Matthews, J.V. Jr., 1980. Tertiary land bridges and their climate: Backdrop for development of the present Canadian insect fauna. The Canadian Entomologist 112: 10891103.Google Scholar
Nelson, C.R., and Bauman, R.W.. 1987. The winter stonefly genus Capnura (Plecoptera: Capniidae) in North America: Systematics, phylogeny, and zoogeography. Transactions of the American Entomological Society 113: 128.Google Scholar
Nelson, G., and Platnick, N.. 1981. Systematics and biogeography: Cladistics and Vicariance. Columbia University Press, New York, NY. 567 pp.Google Scholar
Noonan, G.R. 1988. Biogeography of North American and Mexican insects, and a critique of vicariance biogeography. Systematic Zoology 37: 366384.CrossRefGoogle Scholar
Page, R.D.M. 1988. Quantitative cladistic biogeography: Constructing and comparing area cladograms. Systematic Zoology 37: 254270.Google Scholar
Page, R.D.M. 1989. Comments on component-compatibility in historical biogeography. Cladistics 5: 167182.Google Scholar
Perkins, P.D. 1980. Aquatic beetles of the family Hydraenidae in the western hemisphere: Classification, biogeography and inferred phylogeny (Insecta: Coleoptera). Quaestiones Entomologicae 16: 3554.Google Scholar
Ross, H.H. 1974. Biological Systematics. Addison-Wesley Publishing Co., Inc., Reading, MA. 345 pp.Google Scholar
Spanton, T.G. 1992. Classification, Reconstructed Phylogeny and Geographical History of Weevils of the Genus Panscopus Schönherr, and Cladistic Relationships among Genera of the Tribe Leptopiini occurring in North and Central America (Coleoptera: Curculionidae: Entiminae). Ph.D. dissertation, University of Alberta, Edmonton, Alta. 197 pp.Google Scholar
Tabor, R.W. 1987. A Tertiary accreted terrane: Oceanic basalt and sedimentary rocks in the Olympic Mountains, Washington. pp. 377–382 in Hill, M.L. (Ed.), Cordilleran Section of the Geological Society of America Centennial Field Guide Volume 1. Geological Society of America, Boulder, CO. 490 pp.Google Scholar
Webb, S.D. 1977. A history of savanna vertebrates in the New World. Part I: North America. Annual Review of Ecology and Systematics 8: 355380.Google Scholar
Whitehead, D.R. 1972. Classification, phylogeny, and zoogeography of Schizogenius Putzeys (Coleoptera: Carabidae: Scaritini). Quaestiones Entomologicae 8: 131348.Google Scholar
Wiley, E.O. 1988 a. Vicariance biogeography. Annual Review of Ecology and Systematics 19: 513542.Google Scholar
Wiley, E.O. 1988 b. Parsimony analysis and vicariance biogeography. Systematic Zoology 37(3): 271290.CrossRefGoogle Scholar
Wolfe, J.A. 1975. Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Annals of the Missouri Botanical Garden 62: 264279.CrossRefGoogle Scholar
Wolfe, J.A. 1977. Paleogene Floras from the Gulf of Alaska Region. U.S. Geological Survey Professional Paper 997: 108 pp.Google Scholar
Wolfe, J.A. 1987. An overview of the origins of the modem vegetation and flora of the Northern Rocky Mountains. Annals of the Missouri Botanical Garden 74: 785803.Google Scholar
Zandee, M., and Roos, M.C.. 1987. Component-compatibility in historical biogeography. Cladistics 3(4): 305332.CrossRefGoogle ScholarPubMed