Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T11:17:30.612Z Has data issue: false hasContentIssue false

Vibratory communication signal produced by male western conifer seed bugs (Hemiptera: Coreidae)

Published online by Cambridge University Press:  02 April 2012

Stephen Takács
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Karl Hardin
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Gerhard Gries*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Ward Strong
Affiliation:
British Columbia Ministry of Forests and Range, Kalamalka Forestry Centre, 3401 Reservoir Road, Vernon, British Columbia, Canada V1B 2C7
Robb Bennett
Affiliation:
British Columbia Ministry of Forests and Range, 7380 Puckle Road, Saanichton, British Columbia, Canada V8M 1W4
*
1Corresponding author (e-mail: [email protected]).

Abstract

We tested the hypothesis that the western conifer seed bug, Leptoglossus occidentalis Heidemann, uses a substrate-borne vibratory signal for short-range communication. To record such a signal we used computers equipped with data-acquisition hardware and software, microphones sensitive to sonic and (or) ultrasonic frequencies, membrane-type and piezoelectric speakers capable of emitting sonic and ultrasonic sound, and piezoelectric devices capable of emitting low-level, low-frequency vibrations. By tapping their abdomen on substrate, males produced a wide-band vibratory signal 20 dB (sound pressure level; 0 dB = 20 µPa) above ambient sound, with dominant frequencies of 115 ± 10 and 175 ± 15 Hz and a distinct temporal pattern. There was no evidence for (i) ultrasonic signal components; (ii) signals produced by females or nymphs, or (iii) repeated trains of signal pulses. In two-choice arena experiments, males and females preferred the played-back recording of the male-produced substrate-borne signal over silent controls, whereas nymphs showed no preference for either stimulus. In two-choice dowel experiments with hickory wood or lodgepole pine crossbeams, females (unlike males or nymphs) preferred played-back recordings of the same signal over controls. In two-choice field experiments, this signal emitted in the air by piezoelectric devices or transferred through a wire to lodgepole pine branches attracted more L. occidentalis than did silent controls. Our data support the hypothesis that L. occidentalis uses a substrate-borne vibratory signal for short-range communication. The use of such a signal is consistent with reports on communication by other true bug species.

Résumé

Nous testons l’hypothèse selon laquelle la punaise occidentale des cônes, Leptoglossus occidentalis Heidemann, utilize un signal vibratoire transmis par le substrat pour la communication à courte distance. Pour enregistrer ce signal, nous utilizons des ordinateurs munis de matériel et de logiciels de capture de données, des microphones sensibles aux fréquences soniques et (ou) ultrasoniques, des haut-parleurs piézoélectriques à membrane capables d’émettre des sons audibles et ultrasoniques ainsi que des appareils piézoélectriques capables de produire des vibrations de basse intensité et de basse fréquence. En tambourinant avec leur abdomen sur le substrat, les mâles produisent un signal vibratoire à bande large de 20 dB (niveau de pression du son; 0 dB = 20 µPa) au-dessus du son ambiant avec des fréquences dominantes de 115 ± 10 et de 175 ± 15 Hz et un patron temporel particulier. Il n’y a aucune indication (i) de composantes ultrasoniques dans le signal, (ii) de production de signaux par les femelles et les larves et (iii) de séquences répétées de pulsations de signaux. Dans des expériences d’arènes à deux choix, les mâles et les femelles préfèrent la diffusion d’enregistrements de signaux produits par les mâles et transmis par le substrat à des conditions témoins de silence; en revanche, les larves ne montrent aucune préférence pour l’un ou l’autre stimulus. Dans des expériences de chevilles à deux choix, avec du bois de caryer et des travers de pin vrillé, les femelles (contrairement aux mâles et aux larves) préfèrent la diffusion des enregistrements des mêmes signaux aux conditions témoins. Dans une expérience à deux choix en nature, le même signal émis dans l’air à l’aide d’appareils piézoélectriques ou transmis par un fil aux branches de pins vrillés attire plus de L. occidentalis que ne le font les témoins silencieux. Nos données appuient l’hypothèse selon laquelle L. occidentalis utilize un signal vibratoire transmis par le substrat pour la communication à courte distance. L’utilization d’un tel signal s’accorde bien avec d’autres cas signalés chez les espèces de punaises.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, S.L., Borden, J.H., Kermode, A.R., and Bennett, R.G. 2001. Impact of Leptoglossus occidentalis (Hemiptera: Coreidae) on douglas-fir seed production. Journal of Economic Entomology, 93: 14441451.CrossRefGoogle Scholar
Bates, S.L., Strong, W.B., and Borden, J.H. 2002. Abortion and seed set in lodgepole and western white pine conelets following feeding by Leptoglossus occidentalis (Heteroptera: Coreidae). Environmental Entomology, 31: 10231029.CrossRefGoogle Scholar
Borges, M., Jepson, P.C., and Howse, P.E. 1987. Long-range mate location and close-range courtship behavior of the green stink bug Nezara viridula and its mediation by sex pheromones. Entomologia Experimentalis et Applicata, 44: 205212.CrossRefGoogle Scholar
Casas, J., Magal, C., and Sueur, J. 2007. Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proceedings of the Royal Society of London B Biological Sciences, 274: 10871092.CrossRefGoogle ScholarPubMed
Claridge, M. 2006. Insect sounds and communication—an introduction. In Insect sounds and communication: physiology, behaviour, ecology and evolution. Edited by Drosopoulos, S. and Claridge, M.. CRC Press, Boca Raton, Florida. pp. 310.Google Scholar
Cocroft, R.B., and Rodriguez, R.L. 2005. The behavioral ecology of insect vibrational communication. BioScience, 55: 23334.CrossRefGoogle Scholar
Čokl, A., and Virant-Doberlet, M. 2003. Communication with substrate-borne signals in small plant-dwelling insects. Annual Review of Entomology, 48: 2950.CrossRefGoogle ScholarPubMed
Čokl, A., McBrian, H.L., and Millar, J.G. 2001. Comparison of substrate-borne signals of two stink bug species, Acrosternum hilare and Nezara viridula (Heteroptera: Pentatomidae). Annals of the Entomological Society of America, 94: 471479.CrossRefGoogle Scholar
Connelly, A.E., and Schowalter, T.D. 1991. Seed losses to feeding by Leptoglossus occidentalis (Heteroptera: Coreidae) during two periods of second-year cone development in western white pine. Journal of Economic Entomology, 84: 215217.CrossRefGoogle Scholar
Drosopoulos, S., and Claridge, M. (Editors). 2006. Insect sounds and communication: physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, Florida.Google Scholar
Endler, J.A. 1993. Some general comments on the evolution and design of animal communication systems. Philosophical Transactions of the Royal Society of London B Biological Sciences, 340: 215225.Google ScholarPubMed
Gogola, M. 2006. Vibratory signals produced by Heteroptera – Pentamorpha and Cimicomorpha. In insect sounds and communication: physiology, behaviour, ecology and evolution. Edited by Drosopoulos, S. and Claridge, M.. CRC Press, Boca Raton, Florida. pp. 275295.Google Scholar
Greenfield, M.D. 2002. Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, New York.CrossRefGoogle Scholar
Hedlin, A.F., Yates, H.O. III, Cibrian-Tovar, D., Ebel, B.H., Koerber, T.W., and Merkel, E.P. 1981. Cone and seed insects of North American conifers. Canadian Forestry Service, Ottawa, Ontario, United States Department of Agriculture, Forest Service, Washington D.C., and Secretaria de Agricultura y Recúrsos Hidraulicos, Chapingo, Mexico.Google Scholar
Michelsen, A., Fink, F., Gogala, M., and Traue, D. 1982. Plants as transmission channels for insect vibrational songs. Behavioural Ecology and Sociobiology, 11: 269281.CrossRefGoogle Scholar
Miles, P.W. 1986. Plant-sucking bugs can remove the contents of cells without mechanical damage. Experientia, 43: 937939.CrossRefGoogle Scholar
Millar, J.G. 2005. Pheromones of true bugs: chemistry of pheromones and other semiochemicals II. Topics in Current Chemistry, 240: 3784.CrossRefGoogle Scholar
Mistal, C., Takács, S., and Gries, G. 2000. Evidence for sonic communication in the German cockroach (Dictyoptera: Blattellidae). The Canadian Entomologist, 132: 867876.CrossRefGoogle Scholar
Moraes, M.C.B., Laumann, R.A., Čokl, A., and Borges, M. 2005. Vibratory signals of four Neotropical stink bug species. Physiological Entomology, 30: 175188.CrossRefGoogle Scholar
Rabitsch, W., and Heiss, E. 2005. Leptoglossus occidentalis Heidemann, 1910, eine amerikanische Adventivart auch in Österreich aufgefunden (Heteroptera: Coreidae). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck, 92: 131135.Google Scholar
Strong, W.B., Bates, S.L., and Stoehr, M.U. 2001. Feeding by Leptoglossus occidentalis Heidemann (Hemiptera: Coreidae) reduces seed set in lodgepole pine. The Canadian Entomologist, 133: 857865.CrossRefGoogle Scholar
Virant-Doberlet, M., and Čokl, A. 2004. Vibrational communication in insects. Neotropical Entomology, 33: 121134.CrossRefGoogle Scholar
Yack, J.E. 2004. The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technique, 63: 315337.CrossRefGoogle ScholarPubMed
Zar, J.H. 1984. Biostatistical analysis. Prentice–Hall, Englewood Cliffs, New Jersey.Google Scholar