Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:47:31.948Z Has data issue: false hasContentIssue false

VARIATIONS IN THE LIFE CYCLE OF THE LODGEPOLE TERMINAL WEEVIL, PISSODES TERMINALIS HOPPING (COLEOPTERA: CURCULIONIDAE), IN CALIFORNIA1,2

Published online by Cambridge University Press:  31 May 2012

E. Alan Cameron
Affiliation:
Department of Entomology, Penn State University, University Park, Pennsylvania, USA16802
R.W. Stark
Affiliation:
School of Forestry, University of Idaho, Moscow, Idaho, USA83843

Abstract

The lodgepole terminal weevil, Pissodes terminalis Hopping (Coleoptera: Curculionidae), is widely distributed in western North America on three races of lodgepole pine (Pinus contorta Dougl.), as well as jack pine (P. banksiana Lamb.), Bishop pine (P. muricata D. Don.), and Monterey pine (P. radiata D. Don.).

Three types of life cycle, one with three subtypes, are identified. In the univoltine type 1 cycle, adults emerge from attacked leaders in the fall, overwinter probably in the ground, and re-emerge in the spring to lay eggs in elongating leaders. Larval and pupal development is completed by early fall. The univoltine type 2 life cycle is similar, except that overwintering takes place in leaders; fourth-instar larvae overwinter in type 2A, pupae in type 2B, and adults in type 2C. The type 3 life cycle takes 2 years to complete, with the first winter being passed as a third-instar larva in the leader and the second as an adult, probably in the ground. The type 1 life cycle is most common at altitudes < 2000 m and the type 3 life cycle at altitudes over ca. 2500 m; all types may be found at altitudes of 2000–2500 m.

Résumé

Le charançon du pin tordu Pissodes terminalis Hopping (Coleoptera : Curculionidae) est largement distribué dans l’ouest de l’Amérique du Nord sur trois variétés du pin lodgepole (Pinus contorta Dougl.), de même que sur le pin gris (P. banksiana Lamb.), le pin Anthony (P. muricata D. Don.) et le pin de Monterey (P. radiata D. Don.).

On a identifié trois types de cycle vital dont l’un avec trois variantes. Dans le cas du cycle univoltin de type 1, les adultes émergent de pousses attaqués en automne, hivernent probablement au sol, et rémergent au printemps pour pondre sur les pousses en élongation. Le développement larvaire et pupal est complété au début de l’automne. Le cycle univoltin de type 2 est semblable, sauf que l’hivernement a lieu dans les pousses; ce sont des larves de quatrième stade qui hivernent dans les cas du type 2A, des pupes dans celui de 2B et des adultes pour 2C. Le cycle de type 3 s’étale sur 2 ans, le premier hiver étant passé dans la pousse à létat de larve de troisième stade et le second à létat d’adulte, probablement au sol. Le cycle de type 1 est plus commun aux altitudes de < 2000 m, le type 3 à celles supérieures à environ 2500 m; tous les types sont présents aux altitudes de 2000–2500 m.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cameron, E.A. 1974. Bionomics and impact of the lodgepole terminal weevil, Pissodes terminalis Hopping (Coleoptera: Curculionidae), in the Sierra Nevada of California. Ph.D. dissertation, University of California, Berkeley. x + 85 pp.Google Scholar
Critchfield, W.B. 1957. Geographic variation in Pinus contorta. Maria Moors Cabot Foundation Publ. No. 3. 118 pp.Google Scholar
Drouin, J.A., Sullivan, C.R., and Smith, S.G.. 1963. Occurrence of Pissodes terminalis Hopp. (Coleoptera: Curculionidae) in Canada: Life history, behaviour, and cytogenetic identification. Can. Ent. 95: 7076.CrossRefGoogle Scholar
Dyar, H.G. 1890. The number of molts of Lepidopterous larvae. Psyche 5: 420422.CrossRefGoogle Scholar
McMillan, C. 1956. The edaphic restriction of Cupressus and Pinus in the coast ranges of central California. Ecol. Monogr. 26: 177212.Google Scholar
Santamour, F.S. Jr., 1965. Insect-induced crystallization of white pine resins. I. White-pine weevil. U.S. Forest Serv., Res. Note NE-38. 8 pp.Google Scholar
Smith, S.G., and Sugden, B.A.. 1969. Host trees and breeding sites of native North American Pissodes bark weevils, with a note on synonymy. Ann. ent. Soc. Am. 62: 146148.CrossRefGoogle Scholar
Stark, R.W., and Wood, D.L.. 1964. The biology of Pissodes terminalis Hopping (Coleoptera: Curculionidae) in California. Can. Ent. 96: 12081218.CrossRefGoogle Scholar
Stevens, R.E. 1966. Observations on the Yosemite bark weevil in California. Pan-Pacif. Ent. 42: 184189.Google Scholar
Stevens, R.E., and Knopf, J.A.E.. 1974. Lodgepole terminal weevil in interior lodgepole forests. Environ. Ent. 3: 9981002.Google Scholar
Stevenson, R.E., and Petty, J.J.. 1968. Lodgepole terminal weevil (Pissodes terminalis Hopkins [sic]) in the Alberta/Northwest Territories region. Canada Dept. For. and Rural Development, Bi-mon. Res. Notes 24: 6.Google Scholar
van Buijtenen, J.P., and Santamour, F.S. Jr., 1972. Resin crystallization related to weevil resistance in white pine (Pinus strobus). Can. Ent. 104: 215219.CrossRefGoogle Scholar