Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T16:48:46.142Z Has data issue: false hasContentIssue false

VARIATION AMONG INDIVIDUALS AND THE EFFECT OF TEMPERATURE ON FOOD CONSUMPTION AND REPRODUCTION IN THE COCKROACH, PERIPLANETA AMERICANA (ORTHOPTERA: BLATTIDAE)

Published online by Cambridge University Press:  31 May 2012

C. David Rollo
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8
Marvin W. Gunderman
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8

Abstract

Long term daily feeding in individual adult males and females of Periplaneta americana (L.) was quantified using a standardized diet. There was considerable variation among days, probably related to digestive processes with a period greater than 1 day. Female feeding was correlated with the reproductive cycle, most feeding occurring during the first few days after depositing an oötheca. Females differed with respect to the length of their reproductive cycles, and the amount of food that was accumulated prior to producing an oötheca. Females with high feeding rates produced oöthecae at a faster rate, but they were less efficient at converting food into oöthecal biomass than females that ate more slowly. A decrease in temperature from 25 °C to 20 °C more than doubled the length of the reproductive cycle, but the amount of food accumulated during inter-ovipositional intervals and the size of the oöthecae were not affected.

Résumé

L'activité alimentaire journalière à long terme d'individus mâles et femelles de Periplaneta americana (L.) a été quantifiée en utilisant un régime standard. Une grande variation entre jours a été observée, probablement en relation avec les processus digestifs ayant une périodicité plus grande qu'un jour. L'alimentation des femelles était corrélée au cycle reproducteur, la prise maximale étant enregistrée au cours des quelques jours suivant la déposition d'une ovothèque. Les femelles se sont montrées différentes quant à la longueur de leurs cycles reproducteurs et à la quantité de nourriture prise avant la production d'une ovothèque. Les femelles montrant une prise de nourriture élevée ont produit des ovothèques plus fréquemment, mais elles étaient moins efficaces à convertir leur nourriture en biomass d'ovothèque que les femelles consommant plus lentement. Une baisse de température de 25 °à 20 °C a plus que doublé la durée du cycle reproducteur, mais la quantité de nourriture accumulée au cours des intervalles inter-pontes et la taille des ovothèques n'ont pas été affectées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton-Browne, L. 1975. Regulatory mechanisms in insect feeding. Adv. Insect Physiol. 11: 1116.CrossRefGoogle Scholar
Bell, W. J. 1969. Continuous and rhythmic reproductive cycle observed in Periplaneta americana (L.). Biol. Bull. 137: 239249.CrossRefGoogle Scholar
Bernays, E. A. and Simpson, S. J.. 1982. Control of food intake. Adv. Insect Physiol. 16: 59118.CrossRefGoogle Scholar
Bignell, D. E. 1982. Nutrition and digestion. In Bell, W. J. and Adiyodi, K. G. (Eds.), The American Cockroach. Chapman and Hall: 5786.Google Scholar
Calow, P. 1977 a. Ecology, evolution and energetics: a study in metabolic adaptation. In Macfadyen, A. (Ed.), Advances in Ecological Research. Academic Press 10: 161.Google Scholar
Calow, P. 1977 b. Conversion efficiencies in heterotrophic organisms. Biol. Rev. 52: 385409.Google Scholar
Calow, P. and Townsend, C. R.. 1981. Resource utilization in growth. In Townsend, C. R. and Calow, P. (Eds), Physiological Ecology: An Evolutionary Approach to Resource Use. Sinauer Assoc.: 220244.Google Scholar
Downer, R. G. H. 1981. Physiological and environmental considerations in insect bioenergetics. In Downer, R. G. H. (Ed.), Energy Metabolism in Insects. Plenum Publ.: 117.CrossRefGoogle Scholar
Gelperin, A. 1971. Regulation of feeding. A. Rev. Ent. 16: 365378.CrossRefGoogle Scholar
Gier, H. T. 1947. Growth rate in the cockroach Periplaneta americana (Linn.). Ann. ent. Soc. Am. 40: 303317.Google Scholar
Gordon, H. T. 1959. Minimal nutritional requirements of the German roach Blattella germanica. Ann N.Y. Acad. Sci. 77: 290351.CrossRefGoogle Scholar
Griffiths, J. T. Jr., and Tauber, O. E.. 1942. Fecundity, longevity and parthenogenesis of the American cockroach Periplaneta americana L. Physiol. Zool. 15: 196209.Google Scholar
Krebs, J. R., Houston, A. I., and Charnov, E. L.. 1981. Some recent developments in optimal foraging. In Kamil, A. C. and Sargent, T. D. (Eds.), Foraging Behavior: Ecological, Ethological and Psychological Approaches. Garland Publ.: 318.Google Scholar
Maa, W. C. J. and Bell, W. J.. 1977. An endogenous component of the mechanism controlling the vitellogenic cycle in the American cockroach. J. Insect Physiol. 23: 895897.CrossRefGoogle Scholar
Maynard Smith, J. 1978 Optimization theory in evolution A. Rev. Ecol. Syst. 9: 3156.CrossRefGoogle Scholar
Michael, P. 1971. Energy balance in Periplaneta americana L. Comp. Biochem. Physiol. A 38: 449455.Google Scholar
Mills, R. R., Greenslade, F. C., and Couch, E. F.. 1966. Studies on vitellogenesis in the American cockroach. J. Insect Physiol. 12: 767779.CrossRefGoogle Scholar
Pratt, G. E. 1967. Association of folin-positive material with the blood proteins of the American cockroach and the oviposition cycle. Nature, Lond. 214: 10341035.Google Scholar
Rollo, C. D., Resource allocation and time budgeting in adults of the cockroach, Periplaneta americana: the interaction of behaviour and metabolic reserves. Researches Popul. Ecol. Kyoto Univ. (in press).Google Scholar
Sibly, R. M. 1981. Strategies of digestion and defecation. In Townsend, C. R. and Calow, P. (Eds.), Physiological Ecology: An Evolutionary Approach to Resource Use. Sinauer Assoc.: 109139.Google Scholar
Slansky, F. Jr., and Feeny, P.. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47: 209228.CrossRefGoogle Scholar
Slansky, F. Jr., and Scriber, J. M.. 1982. Selected bibliography and summary of quantitative food utilization by immature insects. Bull. ent. Soc. Am. 28: 4355.Google Scholar
Sutherland, D. J. 1982. Rhythms. In Bell, W. J. and Adiyodi, K. G. (Eds.), The American Cockroach. Chapman and Hall: 247273.Google Scholar
Verrett, J. M. and Mills, R. R.. 1973. Water balance during vitellogenesis by the American cockroach: translocation of water during the cycle. J. Insect Physiol. 19: 18891901.Google Scholar
Verrett, J. M. and Mills, R. R.. 1975. Water balance during vitellogenesis by the American cockroach: distribution of water during the six-day cycle. J. Insect Physiol. 21: 18411845.Google Scholar
Waldbauer, G. P. 1968. Consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229288.CrossRefGoogle Scholar
Weaver, R. J. and Pratt, G. E.. 1977. The effect of enforced virginity and subsequent mating on the activity of the corpus allatum of Periplaneta americana measured in vitro, as related to changes in the rate of ovarian maturation. Physiol. Ent. 2: 5976.CrossRefGoogle Scholar
Weaver, R. J. and Pratt, G. E.. 1981. Effects of starvation and feeding upon corpus allatum activity and oocyte growth in adult female Periplaneta americana. J. Insect Physiol. 27: 7583.CrossRefGoogle Scholar
Weaver, R. J., Pratt, G. E., and Finney, J. R.. 1975. Cyclic activity of the corpus allatum related to gonotrophic cycles in adult female Periplaneta americana. Experientia 31: 597598.CrossRefGoogle ScholarPubMed
Wellington, W. G. 1977. Returning the insect to insect ecology: some consequences for pest management. Environ. Ent. 6: 18.CrossRefGoogle Scholar
Wiegert, R. G. and Petersen, C. E.. 1983. Energy transfer in insects. A. Rev. Ent. 28: 455486.Google Scholar