Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T02:24:18.217Z Has data issue: false hasContentIssue false

Variability in the parasitoid community associated with galls of Diplolepis variabilis (Hymenoptera: Cynipidae): a test of the distance decay hypothesis

Published online by Cambridge University Press:  27 July 2012

Abstract

Galls of Diplolepis variabilis (Bassett) (Hymenoptera: Cynipidae) on their host plant Rosa woodsii Lindley (Rosaceae) support a diverse community of parasitoid and inquiline wasps that exploit the gall inducer and the gall itself. Here, we studied quantitative variation in local structure of the gall community in the Okanagan Valley of southern British Columbia, Canada, from the United States border north, to test the hypothesis that dispersal limitation would generate a distance decay in gall community similarity. We also explored gall community richness in relation to latitude, as the northern range limit of the gall inducer occurs within our study area. We found that gall communities exhibited strikingly similar composition across the study region, with most of the major inquilines and parasitoids present across the gall's range. However, the increased richness of rare parasitoid taxa near the northern range limits of D. variabilis generated a marginally significant positive relationship between gall community richness and latitude. Overall, our study suggests that dispersal constraints do not influence the composition of the Diplolepis Geoffroy gall community at regional scales, and that gall communities offer useful models for studying the association between community structure and range limits.

Résumé

Les galles de Diplolepis variabilis (Bassett) (Hymenoptera: Cynipidae) sur leur hôte Rosa woodsi Lindley (Rosaceae) contiennent une communauté diverse de guêpes parasitoïdes et inquilines qui exploitent l'insecte galligène et la galle elle-même. Nous étudions la variation quantitative de la structure locale de la communauté des galles dans la vallée de l'Okanagan du sud de la Colombie-Britannique, à partir de la frontière des États-Unis vers le nord, afin de tester l'hypothèse selon laquelle la restriction de la dispersion crée un déclin de la similarité entre les communautés des galles en fonction de la distance. Nous examinons aussi la richesse des communautés des galles en fonction de la latitude, parce que la limite nord de l'aire de répartition de l'insecte galligène se trouve dans notre région d’étude. Les communautés des galles présentent des compositions remarquablement semblables dans toute la région d’étude et la plupart des inquilins et des parasites importants sont présents sur toute l'aire de répartition de la galle. Cependant, la richesse accrue de taxons rares de parasitoïdes près des limites nordiques de l'aire de répartition de D. variabilis produit une relation positive significative entre la richesse de la communauté des galles et la latitude. Globalement, notre étude indique que les contraintes à la dispersion n'influencent pas la composition de la communauté des galles de Diplolepis Geoffroy aux échelles régionales et que les communautés des galles représentent des modèles utiles pour l’étude des associations entre la structure des communautés et les limites des aires de répartition.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, W.G., Hunter, M.D., Melika, G., Price, P.W. 2003. Cynipid gall-wasp communities correlate with oak chemistry. Journal of Chemical Ecology, 29: 209223.CrossRefGoogle ScholarPubMed
Abrahamson, W.G., Melika, G., Scrafford, R., Csóka, G. 1998. Gall-inducing insects provide insights into plant systematic relationships. American Journal of Botany, 85: 11591165.CrossRefGoogle ScholarPubMed
Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., et al. 2011. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14: 1928.CrossRefGoogle ScholarPubMed
Borcard, D. Legendre, P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153: 5168.CrossRefGoogle Scholar
Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8: 148159.CrossRefGoogle Scholar
Cooper, W.R. Reiske, L.K. 2007. Community associates of an exotic gallmaker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in eastern North America. Annals of the Entomological Society of America, 100: 236244.CrossRefGoogle Scholar
Cornell, H.V. 1983. The secondary chemistry and complex morphology of galls formed by the Cynipine (Hymenoptera): why and how? American Midland Naturalist, 110: 225234.CrossRefGoogle Scholar
Cornell, H.V. 1985a. Local and regional richness of Cynipine gall wasps on California oaks. Ecology, 66: 12471260.CrossRefGoogle Scholar
Cornell, H.V. 1985b. Species assemblages of cynipid wasps are not saturated. The American Naturalist, 126: 565569.CrossRefGoogle Scholar
Cornell, H.V. Lawton, J.H. 1992. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. The Journal of Animal Ecology, 61: 112.CrossRefGoogle Scholar
Csóka, G., Stone, G.N., Melika, G. 2005. Biology, ecology, and evolution of gall inducing cynipidae. In Biology, ecology, and evolution of gall-inducing arthropods . Edited by A. Raman, C.W. Schaefer and T.M. Withers. Enfield, New Hampshire, Science Publishers. pp. 573642.Google Scholar
Douglas, G.W., Meiginger, D., Pojar, J. 1999. Illustrated flora of British Columbia. Vol. 4: Dicotyledons (Orobanchaceae through Rubiaceae). British Columbia Ministry of Environment, Lands and Parks, and British Columbia Ministry of Forests, Victoria, British Columbia. 427 pp.Google Scholar
Egan, S.P. Ott, J.R. 2007. Host plant quality and local adaptation determine the distribution of a gall-forming herbivore. Ecology, 88: 28682879.CrossRefGoogle ScholarPubMed
Fernandes, G.W. Price, P.W. 1988. Biogeographical gradients in galling species richness. Oecologia, 76: 161167.CrossRefGoogle ScholarPubMed
Fernandes, G.W. Price, P.W. 1992. The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia, 90: 1420.CrossRefGoogle ScholarPubMed
Fritz, R.S. Price, P.W. 1988. Genetic variation among plants and insect community structure: willows and sawflies. Ecology, 64: 845856.CrossRefGoogle Scholar
Gaston, K.J., Blackburn, T., Lawton, J.H. 1997. Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 66: 579601.CrossRefGoogle Scholar
Hawkins, B.A. Mills, N.J. 1996. Variability in parasitoid community structure. Journal of Animal Ecology, 65: 506516.CrossRefGoogle Scholar
Hough, J.S. 1951. The effect of wind on the distribution of cynipid galls caused by Neuroterous lenticularis oliver . Journal of Animal Ecology, 20: 165168.CrossRefGoogle Scholar
Lászlói, Z. Tóthmérész, B. 2011. High host plant aggregation involves uniform gall distribution and high prevalence: the case of wild roses and bedeguar gall wasps (Diplolepis rosae). North-Western Journal of Zoology, 7: 112117.Google Scholar
Legendre, P., Borcard, D., Peres-Neto, P.R. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs, 75: 435450.CrossRefGoogle Scholar
Legendre, P. Legendre, L. 1998. Numerical ecology, 2nd ed. Elsevier, Amsterdam, The Netherlands.Google Scholar
Looney, C. Eigenbrode, S.D. 2010. Landscape-level effects of cynipid component communities of “orphaned” native shrubs. Journal of Insect Conservation, 15: 695706.CrossRefGoogle Scholar
Nekola, J.C. White, P.S. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26: 867878.CrossRefGoogle Scholar
Price, P.W., Abrahamson, W.G., Hunter, M.D., Melika, G. 2004. Using gall wasps on oaks to test broad ecological concepts. Conservation Biology, 18: 14051416.CrossRefGoogle Scholar
R Development Core Team. (2011). R: a language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available from http://www.R-project.org [accessed 8 February 2012].Google Scholar
Ronquist, F. Liljeblad, J. 2001. Evolution of the gall wasp–host plant association. Evolution, 55: 25032522.Google ScholarPubMed
Shorthouse, J.D. 1993. Adaptations of gall wasps of the genus Diplolepis (Hymenoptera: Cynipidae) and the role of gall anatomy in cynipid systematics. Memoirs of the Entomological Society of Canada, 165: 139163.CrossRefGoogle Scholar
Shorthouse, J.D. 2010a. Ecoregions with grasslands in British Columbia, the Yukon and southern Ontario. In Arthropods of Canadian grasslands (Vol. 1): ecology and interactions in grasslands habitats [online]. Edited by J.D. Shorthouse and K.D. Floate. Biological Survey of Canada, Ottawa. pp. 83103. Available from http://www.biology.ualberta.ca/bsc/english/grasslandsbook/Chapter4_ACG.pdf [accessed 25 February 2012].CrossRefGoogle Scholar
Shorthouse, J.D. 2010b. Galls induced by cynipid wasps of the genus Diplolepis (Hymenoptera: Cynipidae) on the roses of Canada's grasslands. In Arthropods of Canadian grasslands (Vol. 1): ecology and interactions in grasslands habitats. Edited by J.D. Shorthouse and K.D. Floate. Biological Survey of Canada, Ottawa. pp. 251279. Available from http://www.biology.ualberta.ca/bsc/english/grasslandsbook/Chapter12_ACG.pdf [accessed 25 February 2012].CrossRefGoogle Scholar
Soininen, J., Lennon, J.J., Hilledbrand, H. 2007a. A multivariate analysis of beta diversity across organisms and environments. Ecology, 88: 28302838.CrossRefGoogle ScholarPubMed
Soininen, J., McDonald, R., Hilledbrand, H. 2007b. The distance decay of similarity in ecological communities. Ecography, 30: 312.CrossRefGoogle Scholar
Stone, G.N. Cook, J.M. 1998. The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proceedings of the Royal Society of London Series B – Biological Sciences, 265: 979988.CrossRefGoogle Scholar
Strong, D.R., Larsson, S., Gullberg, U. 1993. Heritability of host plant resistance to herbivory changes with gall midge density during an outbreak on willow. Evolution, 47: 291300.CrossRefGoogle Scholar
Vavrek, M.J. 2011. Fossil: palaeoecological and palaeogeographical analysis tools [online]. Available from http://cran.r-project.org/web/packages/fossil/index.html [accessed 8 February 2012].Google Scholar
Washburn, J.O. Cornell, H.V. 1981. Parasitoids, patches and phylogeny: their possible role in the local extinction of a cynipid gall wasp population. Ecology, 62: 15971607.CrossRefGoogle Scholar
Wiebes-Rijks, A.A. Shorthouse, J.D. 1992. Ecological relationships of insects inhabiting cynipid galls. In Biology of insect-induced galls. Edited by J.D. Shorthouse and O. Rohfritsch. Oxford University Press, New York. pp. 238257.Google Scholar