Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T17:27:23.693Z Has data issue: false hasContentIssue false

Unexpectedly high among-habitat spider (Araneae) faunal diversity from the Arctic Long-Term Experimental Research (LTER) field station at Toolik Lake, Alaska, United States of America

Published online by Cambridge University Press:  22 March 2013

Derek S. Sikes*
Affiliation:
University of Alaska Museum, 907 Yukon Drive, Fairbanks, Alaska 99775-6960, United States of America
Michael L. Draney
Affiliation:
Department of Natural & Applied Sciences, University of Wisconsin-Green Bay, 2124 Nicolet Drive, Green Bay, Wisconsin 54311-7001, United States of America
Brandi Fleshman
Affiliation:
University of Alaska Museum, 907 Yukon Drive, Fairbanks, Alaska 99775-6960, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

A comparison is made between a three-year structured-sampling study that compared spider faunas of two tundra habitats and a single-year unstructured-sampling study, both within the Arctic Long-Term Experimental Research (LTER) field station at Toolik Lake, Alaska, United States of America. The three-year study documented 51 species and predicted a total of 60 species for the area. Our one season study documented 39 species, of which 24, or 62%, are not shared by the three-year study, raising the total count for the LTER to 75 species. These findings emphasise limitations of species richness estimation methods and help dispel the perception that Arctic tundras are homogeneous and species poor.

Résumé

Nous comparons une étude de trois ans sur les faunes d'araignées de deux habitats de toundra basée sur une échantillonnage structuré à une autre étude d'un an basée sur un échantillonnage non structuré; les deux études ont été réalisées dans le cadre de l'Arctic LTER (Long Term Experimental Research – recherche expérimentale à long terme) station de recherche au lac Toolik, Alaska, États-Unis d'Amérique. L’étude de trois ans a découvert 51 espèces et a prédit un total de 60 espèces dans la région. Notre étude d'une saison a découvert 39 espèces dont 24, soit 62%, ne sont pas partagées par l’étude de trois ans, ce qui amène le décompte total pour le LTER à 75 espèces. Ces résultats soulignent les limites des méthodes d'estimation de la richesse spécifique et aident à corriger l'impression que les toundras arctiques sont homogènes et pauvres en espèces.

Type
Biodiversity & Evolution
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, P.S.A., Juday, G.P., Alix, C., Barber, V.A., Winslow, S.E., Sousa, E.E., et al. 2011. Changes in forest productivity across Alaska consistent with biome shift. Ecology Letters, 2011: 17. doi:10.1111/j.1461-0248.2011.01598.x.Google Scholar
Buckle, D.J., Carroll, D., Crawford, R.L., Roth, V.D. 2001. Linyphiidae and Pimoidae of America north of Mexico: checklist, synonymy, and literature. Part 2. In Contributions à la connaissance des Araignées (Araneae) d'Amérique du Nord. Supplément 10, Edited by P. Paquin and D.J. Buckle. Fabreries, Supplément, Association des entomologists amateurs du Québec, Quebec, Canada, 10: 89191.Google Scholar
Chamberlin, R.V.Ivie, W. 1947. The spiders of Alaska. Bulletin of the University of Utah, 37: 1103.Google Scholar
Chao, A. 2005. Species richness estimation. In Encyclopedia of statistical sciences. Edited by N. Balakrishnan, C.B. Read and B. Vidakovic. Wiley, New York, United States of America. Pp. 79097916.Google Scholar
Colwell, R.K., Mao, C.X., Chang, J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 85: 27172727.CrossRefGoogle Scholar
Danks, H.V. 1981. Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa, Canada.Google Scholar
Dondale, C.D.Redner, J.H. 1978. The insects and arachnids of Canada. Part 5. The crab spiders of Canada and Alaska: Araneae: Philodromidae and Thomisidae. NRC Research Press, Ottawa, Ontario, Canada.Google Scholar
Dondale, C.D.Redner, J.H. 1990. The insects and arachnids of Canada. Part 17. The wolf spiders, nursery web spiders, and lynx spiders of Canada and Alaska: Araneae: Lycosidae, Pisauridae, and Oxyopidae. NRC Research Press, Ottawa, Ontario, Canada.Google Scholar
Dondale, C.D., Redner, J.H., Paquin, P., Levi, H.W. 2003. The insects and arachnids of Canada. Part 23. The orb weaving spiders of Canada and Alaska (Araneae: Uloboridae, Tetragnathidae, Araneidae, Theridiosomatidae). NRC Research Press, Ottawa, Ontario, Canada.Google Scholar
Hillebrand, H. 2004. On the generality of the latitudinal diversity gradient. The American Naturalist, 163: 192211.CrossRefGoogle ScholarPubMed
Holm, A. 1960. On a collection of spiders from Alaska. Zoologiska Bidrag fran Uppsala, 33: 109134.Google Scholar
Holm, A. 1970. Notes on spiders collected by the “Vega” expedition I878-I880. Insect Systematics and Evolution, 1: 188208.CrossRefGoogle Scholar
Hopkin, M. 2006. Spying on nature. Nature, 444: 420421.CrossRefGoogle ScholarPubMed
Koponen, S. 1993. On the biogeography and faunistics of European spiders: latitude, altitude and insularity. Bulletin de la Société Neuchâteloise des Sciences Naturelles, 116: 141152.Google Scholar
Lawrence, D.M.Slater, A.G. 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 32: L24401. doi:24410.21029/22005GL025080.CrossRefGoogle Scholar
Longino, J.T.Colwell, R.K. 1997. Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecological Applications, 7: 12631277.CrossRefGoogle Scholar
MacLean, S.F. Jr. 1975. Ecology of tundra invertebrates at Prudhoe Bay, Alaska. In Ecological investigations of the tundra biome in the Prudhoe Bay Region, Alaska. Edited by J. Brown. Biological Papers of the University of Alaska. Special Report, 2: 115123.Google Scholar
McGuire, A.D., Anderson, L.G., Christensen, T.R., Dallimore, S., Guo, L., Hayes, D.J., et al. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79: 523555.CrossRefGoogle Scholar
Melbourne, B.A. 1999. Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Australian Journal of Ecology, 24: 228239.CrossRefGoogle Scholar
Paquin, P., Buckle, D.J., Dupérré, N., Dondale, C.D. 2010. Checklist of the spiders (Araneae) of Canada and Alaska. Zootaxa, 2461: 1170.CrossRefGoogle Scholar
Pianka, E.R. 1966. Latitudinal gradients in species diversity: a review of concepts. The American Naturalist, 100: 3346.CrossRefGoogle Scholar
Platnick, N.I.Dondale, C.D. 1992. The insects and arachnids of Canada. Part 19. The ground spiders of Canada and Alaska: Araneae: Gnaphosidae. NRC Research, Ottawa, Ontario, Canada.Google Scholar
Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65: 514527.CrossRefGoogle Scholar
Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge University Press, New York, United States of America.CrossRefGoogle Scholar
Stone, R.S., Dutton, E.G., Harris, J.M., Longenecker, D. 2002. Earlier spring snowmelt in northern Alaska as an indicator of climate change. Journal of Geophysical Research, 107: 10-1–10-13. D10. doi:10.1029/2000JD000286.CrossRefGoogle Scholar
Sturm, M., Schimel, J., Mechaelson, G., Welker, J.M., Oberbauer, S.F., Liston, L.E., et al. 2005. Winter biological processes could help convert Arctic tundra to shrubland. BioScience, 55: 1726.CrossRefGoogle Scholar
Ubick, D., Paquin, P., Cushing, P.E., Roth, V. 2005. Spiders of North America: an identification manual. American Arachnological Society, Poughkeepsie, New York, United States of America.Google Scholar
Uetz, G.W.Unzicker, J.D. 1976. Pitfall trapping in ecological studies of wandering spiders. Journal of Arachnology, 3: 101111.Google Scholar
Walker, D.A.Maier, H.A. 2007. Geobotanical maps in the vicinity of the Toolik Lake Field Station, Alaska [online]. Institute of Arctic Biology, Biological Papers of the University of Alaska, No. 27. Available from http://www.arcticatlas.org/maps/themes/tl5k/tl5kvg [accessed 6 July 2012].Google Scholar
Watson, D.G., Davis, J.J., Hanson, W.C. 1966. Terrestrial invertebrates. In Environment of the Cape Thompson region, Alaska. Edited by N.J. Wilimovsky and J.N. Wolfe. Division of Technical Information, United States Atomic Energy Commission. Springfield, Virginia, United States of America. Pp. 565584.Google Scholar
Weber, N.A. 1949. Late summer invertebrates, mostly insects, of the Alaska Arctic Slope. Entomological News, 60: 118128.Google Scholar
Weber, N.A. 1950. A survey of the insects and related arthropods of Arctic Alaska. Part 1.Transactions of the American Entomological Society, 76: 147206.Google Scholar
Wyant, K.A., Draney, M.L., Moore, J.C. 2011. Epigeal spider (Araneae) communities in moist acidic and dry heath tundra at Toolik Lake, Alaska. Arctic, Antarctic, and Alpine Research, 43: 301312. doi:10.1657/1938-4246-43.2.301.CrossRefGoogle Scholar