Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T02:06:39.674Z Has data issue: false hasContentIssue false

TROPHIC INTERACTION BETWEEN SITODIPLOSIS MOSELLANA (DIPTERA: CECIDOMYIIDAE) AND SPRING WHEAT: IMPLICATIONS FOR YIELD AND SEED QUALITY1

Published online by Cambridge University Press:  31 May 2012

R.J. Lamb*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
J.R. Tucker
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
I.L. Wise
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
M.A.H. Smith
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
*
2 Author to whom all corresponding should be addressed (E-mail: [email protected]).

Abstract

Larvae of the wheat midge, Sitodiplosis mosellana (Géhin), feed on developing seeds of common and durum wheats, Triticum aestivum L. and Triticum durum L. (Graminae). The trophic relationships between insect and plant were quantified as biomass gains or losses using plants infested artificially in the laboratory and naturally in plots and commercial fields. The biomass of seeds from different parts of a wheat spike varied, but seeds in all parts of a spike were infested, independently of their potential biomass. Most infested seeds had 1–3 larvae, but at least 11 larvae could mature on a single seed without reducing larval biomass. When larvae finished feeding and seeds attained about one third of their biomass, specific impact varied from 4.1 to 8.5 mg of seed biomass lost for each milligram of biomass gained by a larva, with the impact declining as the number of larvae per seed increased. Specific impact rose to 100 mg/mg as seeds of T. aestivum and a primitive wheat, Triticum monococcum L., matured, and higher still for T. durum. Wheat plants did not compensate for wheat midge damage, and no indirect damage to uninfested seeds was detected. The distribution of biomass for infested seeds was bimodal, with over 40% less than 8 mg when hand harvested, whereas infested seeds harvested mechanically had a unimodal distribution, with nearly all of the most severely damaged seeds removed during harvest. A visual rating system of six damage categories was related to the biomass of the seeds. The germination and early growth rate of infested seeds were reduced compared with those of uninfested seeds. Based on the biomass relationships for the insect–plant interaction and the visual rating of damage, high-protein number 1 grade common and durum wheat and number 1 grade durum wheat can tolerate up to 6% of the seeds being infested by larvae, before downgrading is likely. For other grades, the economic threshold is 10% of the seeds infested, based on yield loss. Seed growers can adopt the threshold for number 1 wheat (6% infestation) to prevent downgrading, which would also reduce the effects of infestation on seed germination to an acceptable level.

Résumé

Les larves de la Cécidomyiie du blé, Sitodiplosis mosellana (Géhin), se nourrissent des graines en développement du blé commun et du blé dur, Triticum aestivum L. et Triticum durum L. (Graminae). Les relations trophiques entre insectes et plantes ont été quantifiées sous forme de gains ou de pertes de biomasse, en utilisant des plantes infectées artificiellement en laboratoire et d’autres infectées naturellement dans des parcelles expérimentales et dans des cultures commerciales. La biomasse des graines varie dans les différentes parties d’un épi de blé, mais toutes les graines étaient infestées dans toutes les parties de l’épi, indépendamment de leur biomasse potentielle. La plupart des graines infestées contenaient 1–3 larves, mais au moins 11 larves peuvent atteindre leur maturité dans une seule graine sans qu’il y ait réduction de la biomasse larvaire. Quand les larves avaient fini de se nourrir et que les graines avaient atteint environ un tiers de leur biomasse, l’impact spécifique variait de 4,1 à 8,5 mg de biomasse de graine perdus pour chaque milligramme de biomasse gagné par une larve, et l’impact diminuait en fonction inverse de la densité des larves par graine. L’impact spécifique a atteint 100 mg/mg pendant la maturation des graines de T. aestivum et d’un blé primitif Triticum monococcum L. et ce taux était encore plus élevé dans le cas des graines de T. durum. Les plants de blé ne compensent pas pour les dommages causés par l’insecte et aucun dommage indirect aux graines non infestées n’a été observé. La répartition de la biomasse des graines infestées était bimodale et plus de 40% avaient une biomasse inférieure à 8 mg lorsque la récolte était faite à la main, alors que les graines infestées récoltées mécaniquement avaient une répartition unimodale et presque toutes les graines fortement endommagées étaient perdues au moment de la récolte. Notre système de classement visuel en six catégories de dommages était en corrélation avec la biomasse des graines. La germination et le taux de croissance des graines infestées au début étaient plus lents que ceux des graines saines. D’après les relations entre les biomasses dans les interactions insectes–plantes et le classement visuel des dommages, le blé commun ou le blé dur n° 1 à haute teneur en protéines, et le blé dur n° 1, peuvent tolérer que jusqu’à 6% de leurs graines soient infestées par des larves sans qu’il y ait perte de qualité. Pour les graines de qualité inférieure, le seuil économique de tolérance est de 10% de graines infestées et cette valeur a été établie d’après les pertes de rendements. Les producteurs de graines peuvent adopter le seuil de 6% pour leur blé n° 1 sans qu’il y ait réduction de la qualité, ce qui aurait pour effet secondaire de réduire les effets des infestations sur la germination jusqu’à un niveau acceptable.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No.1775 of the Cereal Research Centre, Winnipeg.

References

Barker, P.S., McKenzie, R.I.H. 1996. Possible sources of resistance to the wheat midge in wheat. Canadian Journal of Plant Science 76: 689–95CrossRefGoogle Scholar
Canadian Grain Commission. 1998. Official grain grading guide. Canadian Grain Commission, Winnipeg, Manitoba, Section 4. pp. 1428Google Scholar
Cochran, W.G. 1977. Sampling techniques. 3rd ed. New York: John Wiley & SonsGoogle Scholar
Dexter, J.E., Preston, K.R., Cooke, L.A., Morgan, B.C., Kruger, J.E., Kilborn, R.H., Elliott, R.H. 1987. The influence of orange wheat blossom midge (Sitodiplosis mosellana Géhin) damage on hard red spring wheat quality and the effectiveness of insecticide treatments. Canadian Journal of Plant Science 67: 697712CrossRefGoogle Scholar
Ding, H., Lamb, R.J. 1999. Oviposition and larval establishment of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Gramineae) at different growth stages. The Canadian Entomologist 131: 475–81CrossRefGoogle Scholar
Elliott, R.H. 1988 a. Evaluation of insecticides for protection of wheat against damage by the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 120: 615–26CrossRefGoogle Scholar
Elliott, R.H. 1988 b. Factors influencing the efficacy and economic returns of aerial sprays against the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 120: 941–54CrossRefGoogle Scholar
Elliott, R.H., Mann, L.W. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist 128: 367–75CrossRefGoogle Scholar
Gagné, R.J., Doane, J.F. 1999. The larval instars of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Proceedings of the Entomological Society of Washington 101: 5763Google Scholar
Gavloski, J.E., Lamb, R.J. 2000. Specific impacts of herbivores: comparing diverse insect species on young plants. Environmental Entomology 28: 17CrossRefGoogle Scholar
Helenius, J., Kurppa, S. 1989. Quality losses in wheat caused by the orange wheat blossom midge Sitodiplosis mosellana. Annals of Applied Biology 114: 409–17CrossRefGoogle Scholar
Lamb, R.J., MacKay, P.A. 1995. Tolerance of antibiotic and susceptible cereal seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi. Annals of Applied Biology 127: 573–83CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., Olfert, O.O., Gavloski, J., Barker, P.S. 1999. Distribution and seasonal abundance of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat. The Canadian Entomologist 131: 387–97CrossRefGoogle Scholar
MacKay, P.A., Lamb, R.J. 1996. Dispersal of five aphids (Homoptera: Aphididae) in relation to their impact on Hordeum vulgare. Environmental Entomology 25: 1032–44CrossRefGoogle Scholar
Miller, B.S., Halton, P. 1961. The damage to wheat kernels caused by the wheat blossom midge Sitodiplosis mosellana. Journal of the Science of Food and Agriculture 12: 391–8CrossRefGoogle Scholar
Mukerji, M.K., Olfert, O.O., Doane, J.F. 1988. Development of sampling designs for egg and larval populations of the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in wheat. The Canadian Entomologist 120: 497505CrossRefGoogle Scholar
Ni, H., Ding, H. 1994. Dynamics and integrated management strategy of wheat midge. Bulletin of Chinese Agricultural Science 10: 20–3Google Scholar
Oakley, J.N., Cumbleton, P.C., Corbett, S.J., Saunders, P., Green, D.I., Young, J.E.B., Rodgers, R. 1998. Prediction of orange wheat blossom midge activity and risk of damage. Crop Protection 17: 145–9CrossRefGoogle Scholar
Olfert, O.O., Mukerji, M.K., Doane, J.F. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist 117: 593–8CrossRefGoogle Scholar
SAS Institute Inc. 1989. SAS/STAT® user's guide, version 6. 4th ed. Vol. 1. Cary: SAS Institute Inc.Google Scholar