Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T05:16:32.788Z Has data issue: false hasContentIssue false

Transport of fungal symbionts by mountain pine beetles

Published online by Cambridge University Press:  02 April 2012

K.P. Bleiker*
Affiliation:
Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, United States of America
S.E. Potter
Affiliation:
Department of Biological Sciences, California State University, Hayward, California 94542, United States of America
C.R. Lauzon
Affiliation:
Department of Biological Sciences, California State University, Hayward, California 94542, United States of America
D.L. Six
Affiliation:
Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

The perpetuation of symbiotic associations between bark beetles (Coleoptera: Curculionidae: Scolytinae) and ophiostomatoid fungi requires the consistent transport of fungi by successive beetle generations to new host trees. We used scanning electron microscopy and culture methods to investigate fungal transport by the mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins. MPB transports its two main fungal associates, Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield and Ophiostoma montium (Rumbold) von Arx, in sac-like mycangia on the maxillary cardines as well as on the exoskeleton. Although spores of both species of fungi were observed on MPB exoskeletons, often in pits, O. montium spores were generally more abundant than G. clavigera spores. However, a general scarcity of spores of either species on MPB exoskeletons compared with numbers on scolytines that lack sac-like mycangia indicates that fungal transport exteriorly on MPBs is incidental rather than adaptive. Conidia were the dominant spore type transported regardless of location or species; however, our results suggest that once acquired in mycangia, conidia may reproduce in a yeast-like form and even produce hypha-like strands and compact conidiophore-like structures. Fungi that propagate in mycangia may provide beetles with a continual source of inocula during the extended egg-laying period.

Résumé

La perpétuation des associations symbiotiques entre les scolytes (Coleoptera: Curculionidae: Scolytinae) et les champignons ophiostomatoïdes nécessite un transport continu des champignons par les générations successives de coléoptères vers de nouveaux arbres hôtes. Le microscope électronique à balayage et des méthodes de culture nous ont servi à étudier le transport des champignons chez le dendroctone du pin ponderosa (MPB), Dendroctonus ponderosae Hopkins. MPB transporte ses deux champignons associés principaux, Grosmannia clavigera (Robinson-Jeffrey et Davidson) Zipfel, de Beer et Wingfield et Ophiostoma montium (Rumbold) von Arx, dans des mycanges en forme de sacs sur les cardos des maxilles et sur l’exosquelette. Bien qu’on observe les spores des deux champignons sur l’exosquelette de MPB, souvent dans des fosses, les spores d’O. montium sont généralement plus abondantes que les spores de G. clavigera. Cependant, la rareté générale des spores des deux espèces sur l’exosquelette de MPB par rapport à l’exosquelette de scolytinés qui n’ont pas de mycanges en forme de sacs indique que le transport externe de champignons sur MPB est accidentel plutôt qu’adaptatif. Quels que soit le site et l’espèce, les conidies sont le type dominant de spores transportées; cependant, nos observations indiquent qu’une fois entrées dans les mycanges, les conidies peuvent se reproduire en une forme de levure et même produire des filaments d’hyphes et des structures compactes semblables à des conidiophores. Les champignons qui se reproduisent dans les mycanges peuvent fournir aux coléoptères une source continue d’inoculum durant la longue période de ponte des oeufs.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamson, L.P., Chu, H.M., and Norris, D.M. 1967. Symbiotic interrelationships between microbes and ambrosia beetles. II. The organs of microbial transport and perpetuation in Trypodendron betulae and T. retusum (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 60: 11071110.CrossRefGoogle Scholar
Ayres, M.P., Wilkens, R.T., Ruel, J.J., Lombardero, M.J., and Vallery, E. 2000. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology, 81: 21982210.CrossRefGoogle Scholar
Barras, S.J., and Perry, T.J. 1971. Gland cells and fungi associated with prothoracic mycangium of Dendroctonus adjunctus (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 64: 123126.CrossRefGoogle Scholar
Barras, S.J., and Perry, T.J. 1972. Fungal symbionts in the prothoracic mycangium of Dendroctonus frontalis. Zeitschrift für Angewandte Entomologie, 71: 95104.CrossRefGoogle Scholar
Batra, L.R. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science, 66: 213236. doi:10.2307/3626562.CrossRefGoogle Scholar
Bleiker, K.P., and Six, D.L. 2007. Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environmental Entomology, 36: 13841396. PMID:18284766 doi:10.1603/0046-225X(2007)36[1384:DBOFAT]2.0.CO;2.CrossRefGoogle Scholar
Bleiker, K.P., and Six, D.L. 2009. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microbial Ecology, 57: 191202. PMID:1854 5867 doi:10.1007/s00248-008-9395-6.CrossRefGoogle Scholar
Brand, J.M., Bracke, J.W., Markovetz, A.J., Wood, D.L., and Browne, L.E. 1975. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature (London), 254(5496): 136137. PMID:804144 doi:10.1038/254136a0.CrossRefGoogle ScholarPubMed
Bridges, J.R. 1981. Nitrogen fixing bacteria associated with bark beetles. Microbial Ecology, 7: 131138. doi:10.1007/BF02032495.CrossRefGoogle ScholarPubMed
Coppedge, B.R., Stephen, F.M., and Felton, G.W. 1995. Variation in female southern pine beetle size and lipid content in relation to fungal associates. The Canadian Entomologist, 127: 145154.CrossRefGoogle Scholar
Delalibera, I. Jr., Handelsman, J., and Raffa, K.F. 2005. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology, 34: 541547.CrossRefGoogle Scholar
Furniss, M.M., Solheim, H., and Christiansen, E. 1990. Transmission of blue-stain fungi by Ips typographus (Coleoptera: Scolytidae) in Norway spruce. Annals of the Entomological Society of America, 83: 712716.CrossRefGoogle Scholar
Furniss, M.M., Harvey, A.E., and Solheim, H. 1995. Transmission of Ophiostoma ips (Ophiostomatales: Ophiostomataceae) by Ips pini (Coleoptera: Scolytidae) to ponderosa pine in Idaho. Annals of the Entomological Society of America, 88: 653660.CrossRefGoogle Scholar
Lee, S., Kim, J.J., and Breuil, C. 2006. Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae, and infested lodgepole pines in British Columbia. Fungal Diversity, 22: 91105.Google Scholar
Levieux, J., Lieutier, F., Moser, J.C., and Perry, T.J. 1989. Transportation of phytopathogenic fungi by the bark beetle Ips sexdentatus Boerner and associated mites. Journal of Applied Entomology, 108: 111.CrossRefGoogle Scholar
Lewinsohn, D., Lewinsohn, E., Bertagnolli, C.L., and Patridge, A.D. 1994. Blue-stain fungi and their transport structures on the Douglas-fir beetle. Canadian Journal of Forest Research, 24: 22752283. doi:10.1139/x94-292.CrossRefGoogle Scholar
Livingston, R.L., and Berryman, A.A. 1972. Fungus transport structures in the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). The Canadian Entomologist, 104: 17931800.CrossRefGoogle Scholar
Moore, G.E. 1972. Microflora from the alimentary tract of healthy southern pine beetles, Dendroctonus frontalis (Scolytidae), and their possible relationship to pathogenicity. Journal of Invertebrate Pathology, 19: 7275. doi:10.1016/0022-2011(72)90191-7.CrossRefGoogle Scholar
Paine, T.D., and Birch, M.C. 1983. Acquisition and maintenance of mycangial fungi by Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Environmental Entomology, 12: 13841386.CrossRefGoogle Scholar
Raffa, K.F., and Berryman, A.A. 1983. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). The Canadian Entomologist, 115: 723734.CrossRefGoogle Scholar
Reid, R.W., Whitney, H.S., and Watson, J.A. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Canadian Journal of Botany, 45: 11151126. doi:10.1139/b67-116.CrossRefGoogle Scholar
Six, D.L. 2003 a. A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Canadian Journal of Forest Research, 33: 13311334. doi:10.1139/x03-047.CrossRefGoogle Scholar
Six, D.L. 2003 b. Bark beetle — fungus symbioses. In Insect symbiosis. Edited by Bourtzis, K. and Miller, T.A.. CRC Press, New York. pp. 97114.CrossRefGoogle Scholar
Six, D.L., and Bentz, B.J. 2007. Temperature determines symbiont abundance in a multipartite bark beetle — fungus ectosymbiosis. Microbial Ecology, 54: 112118. PMID:17264992 doi:10.1007/s00248-006-9178-x.CrossRefGoogle Scholar
Six, D.L., and Paine, T. 1998. Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environmental Entomology, 27: 13931401.CrossRefGoogle Scholar
Six, D.L., and Paine, T. 1999. Allozyme diversity and gene flow in Ophiostoma clavigerum (Ophiostomatales: Ophiostomataceae), the mycangial fungus of the Jeffrey pine beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 29: 324331. doi:10.1139/cjfr-29-3-324.CrossRefGoogle Scholar
SPSS Inc. 2000. SPSS. Version 10.0. SPSS Inc., Chicago, Illinois.Google Scholar
Tsuneda, A., and Hiratsuka, Y. 1984. Sympodial and annellidic conidiation in Ceratocystis clavigera. Canadian Journal of Botany, 62: 26182624.CrossRefGoogle Scholar
Upadhyay, H.P. 1981. A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens, Georgia.Google Scholar
Whitney, H.S. 1971. Association of Dendroctonus ponderosae (Coleoptera: Scolytidae) with blue stain fungi and yeasts during brood development in lodgepole pine. The Canadian Entomologist, 103: 14951503.CrossRefGoogle Scholar
Whitney, H.S., and Farris, S.H. 1970. Maxillary mycangium in the mountain pine beetle. Science (Washington, D.C.), 167(3914): 5455. PMID: 17759499 doi:10.1126/science.167.3914.54.Google ScholarPubMed
Yamaoka, Y., Hiratsuka, Y., and Maruyama, P.J. 1995. The ability of Ophiostoma clavigerum to kill mature lodgepole pine trees. European Journal of Forest Pathology, 25(6—7): 401404. doi:10.1111/j.1439-0329.1995.tb01355.x.CrossRefGoogle Scholar