Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:57:32.728Z Has data issue: false hasContentIssue false

Transovarial transmission of novaluron in Choristoneura rosaceana (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  02 January 2014

S.-H.S. Kim*
Affiliation:
Pesticides Alternative Laboratory, Michigan State University, B-10 Center for Integrated Plant Systems, Michigan State University, East Lansing, Michigan 48824-1311, United States of America Sustainable Fruit/Pecan Behavior Laboratory, University of Arkansas, 310 AGRI, Fayetteville, Arkansas 72701, United States of America
C. Vandervoort
Affiliation:
Pesticide Analytical Laboratory, Michigan State University, 206 Center for Integrated Plant Systems, Michigan State University, East Lansing, Michigan 48824-1311, United States of America
M.E. Whalon
Affiliation:
Pesticides Alternative Laboratory, Michigan State University, B-10 Center for Integrated Plant Systems, Michigan State University, East Lansing, Michigan 48824-1311, United States of America
J.C. Wise
Affiliation:
Applied Insecticide Toxicology Laboratory, 206 Center for Integrated Plant Systems, Michigan State University, East Lansing, MI 48824, United States of America
*
1Corresponding author (e-mail: [email protected]).

Abstract

The obliquebanded leafroller (OBLR), Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae), has become a significant pest of tree fruit production in North America within the past 25 years. Control of the OBLR has historically relied upon broad-spectrum insecticides like organophosphates, carbamates, and pyrethroids. However, with evidence of resistance development, newer chemistries have been developed to combat this pest. The effects of novaluron, a chitin synthesis inhibitor, were studied to determine if reduced egg hatch occurs after exposure to adults. The transovarial effects of this compound were tested through laboratory bioassays, looking at decreased egg hatch and also presence of novaluron in egg masses following adult exposure. Results from the study demonstrated a decrease in egg hatch after adult exposure. Analysis of egg mass using HPLC also demonstrated novaluron present in the eggs laid by treated adults. Along with the direct ovicidal and larvicidal properties of novaluron, this transovarial activity provides an important contribution to the overall control seen in the field.

Résumé

Au cours des vingt-cinq dernières années, la tordeuse à bandes obliques, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae), est devenue un ravageur important des cultures d'arbres fruitiers en Amérique du Nord. La lutte contre la tordeuse à bandes obliques a traditionnellement reposé sur l'utilisation d'insecticides à large spectre, tels que les organophosphates, les carbamates et les pyréthroïdes. Cependant, après la constatation du développement de résistances, de nouvelles molécules chimiques ont été mises au point pour combattre ce ravageur. Nous avons étudié l'effet du novaluron, un inhibiteur de la synthèse de la chitine, pour voir si l'exposition des adultes au produit entraîne une réduction de l’éclosion des œufs. Les effets transovariens du produit ont été vérifiés par des essais en laboratoire qui testaient la réduction de l’éclosion des œufs et la présence de novaluron dans les masses d’œufs après une exposition des adultes. Nos résultats indiquent une réduction de l’éclosion des œufs après une exposition des adultes. L'analyse des masses d’œufs par CLHP (HPLC) révèle la présence de novaluron dans les œufs pondus par les adultes traités. En plus des propriétés ovicides et larvicides directes du novaluron, cette activité transovarienne se révèle être un facteur important dans la lutte globale observée sur le terrain.

Type
Insect Management
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Gilles Boiteau

References

Agnello, A.M., Reissig, W.H., Spangler, S.M., Charlton, R.E., Kain, D.P. 1996. Trap response and fruit damage by obliquebanded leafroller (Lepidoptera: Tortricidae) in pheromone-treated apple orchards in New York. Environmental Entomology, 25: 268282.Google Scholar
Ahmad, M., Hollingworth, R.M., Wise, J.C. 2002. Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) from Michigan. Pest Management Science, 58: 834838.CrossRefGoogle ScholarPubMed
Alyokhin, A., Sewell, G., Choban, R. 2008. Reduced viability of Colorado potato beetle, Leptinotarsa decemlineata, eggs exposed to novaluron. Pest Management Science, 64: 9499.Google Scholar
Brunner, J.F., Beers, E.H., Dunley, J.E., Doerr, M., Granger, K. 2005. Role of neonicotinyl insecticides in Washington apple integrated pest management. Part I. Control of lepidopteran pests. Journal of Insect Science, 5: 14.CrossRefGoogle ScholarPubMed
Carriére, Y., Deland, J.P., Roff, D.A. 1996. Obliquebanded leafroller (Lepidoptera: Tortricidae) resistance to insecticides: among-orchard variation and cross-resistance. Journal of Economic Entomology, 89: 577582.CrossRefGoogle Scholar
Casa-Giner, V., Gandia-Balaguer, A., Mengod-Puerta, C., Primo-Millo, J., Primo-Yufera, E. 1999. Insect growth regulators as chemosterilants for Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 92: 303308.Google Scholar
Charmillot, P.J., Gourmelon, A., Fabre, A.L., Pasquier, D. 2001. Ovicidal and larvicidal effectiveness of several insect growth inhibitors and regulators on codling moth Cydia pomonella L. (Lepidotera: Tortricidae). Journal of Applied Entomology, 125: 147153.CrossRefGoogle Scholar
Chism, B.D.Apperson, C.S. 2003. Horizontal transfer of the insect growth regulator pyriproxyfen to larval microcosms by gravid Aedes albopictus and Ochlerotatus triseriatus mosquitoes in the laboratory. Medical Veterinary Entomology, 17: 211220.Google Scholar
Cloyd, R.A.Dickinson, A. 2006. Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). Journal of Economic Entomology, 99: 15961604.Google Scholar
Cutler, C., Scott-Dupree, C., Tolman, J., Harris, C.R. 2005. Acute and sublethal toxicity of novaluron, a novel chitin synthesis inhibitor, to Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Pest Management Science, 61: 10601068.Google Scholar
Elliott, R.H.Anderson, D.W. 1982. Factors influencing the activity of diflubenzuron against the codling moth, Laspeyresia pomonella (LepidopteraL Olethreutidae). The Canadian Entomologist, 114: 259268.CrossRefGoogle Scholar
Gökçe, A., Kim, S.H.S., Wise, J.C., Whalon, M.E. 2009. Reduced egg viability in codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) following adult exposure to novaluron. Pest Management Science, 65: 283287.Google Scholar
Hajjar, N.P.Casida, J.E. 1978. Insecticidal benzoylphenyl ureas: structure-activity relationships as chitin synthesis inhibitors. Science, 200: 14991500.Google Scholar
Howitt, A.H. 1993. Arthropod pests of pome fruit. In Common tree fruit pests. Michigan State University Extension NCR 63, Michigan State University, East Lansing, Michigan, United States of America. Pp. 22–26.Google Scholar
Hoying, S.A.Riedl, H. 1980. Susceptibility of codling moth to diflubenzuron. Journal of Economic Entomology, 73: 556560.Google Scholar
Ishaaya, I. 1990. Benzoyphenyl ureas and other selective control agents – mechanism and application. In Pesticides and alternatives . Edited by J.E. Casida. Elsevier, Amsterdam, The Netherlands. Pp. 365376.Google Scholar
Ishaaya, I., Barazani, A., Kontsedalov, S., Mazirov, D., Horowitz, A.R. 2007. Insecticides with novel modes of action: mechanism, selectivity and cross resistance. Entomological Research, 37: 148152.Google Scholar
Ishaaya, I., Damme, N., Tirry, L. 1998. Novaluron, optimization and use for the control of the beet armyworm and greenhouse whitefly. Brighton: Crop Protection Conference Pests and Diseases. British Crop Protection Council, Brighton, United Kingdom. Pp. 4950.Google Scholar
Ishaaya, I., Kontsedalov, S., Horowitz, A.R. 2003. Novaluron (Rimon), a novel IGR: potency and cross-resistance. Archives of Insect Biochemistry and Physiology, 54: 157164.Google Scholar
Ishaaya, I., Kontsedalov, S., Mazirov, D., Horowitz, A.R. 2001. Biorational agents: mechanism and importance in IPM and IRM programs for controlling agricultural pests. Proceedings of the International Symposium on Crop Protection, 66: 363374.Google ScholarPubMed
Ishaaya, I., Yablonski, S., Mendelson, Z., Mansour, Y., Horowitz, A.R. 1996. Novaluron (MCW-275), a novel benzoylphenyl urea, suppressing developing stages of lepidopteran, whitefly and leafminer pests. Brighton: Crop Protection Conference Pests and Diseases. British Crop Protection Council, Brighton, United Kingdom. Pp. 10131020.Google Scholar
Kim, S.H.S., Wise, J.C., Gökçe, A., Whalon, M.E. 2011. Novaluron causes reduced egg hatch after treating adult codling moths, Cydia pomonella: Support for transovarial transfer. Journal of Insect Science, 11: 126.Google Scholar
Knight, A.L. 2000. Tebufenozide targeted against codling moth (Lepidoptera: Tortricidae) adults, eggs, and larvae. Journal of Economic Entomology, 93: 17601767.CrossRefGoogle ScholarPubMed
Kostyukovsky, M.Trostanetsky, A. 2006. The effect of a new chitin synthesis inhibitor, novaluron, on various development stages of Tribolium castaneum (Herbst). Journal of Stored Product Research, 42: 136148.Google Scholar
Lawson, D.S., Reissig, W.H., Smith, C.M. 1997. Response of larval and adult obliquebanded leafroller (Lepidoptera: Tortricidae) to selected insecticides. Journal of Economic Entomology, 90: 14501457.Google Scholar
Nakagawa, Y.Matsumura, F. 1994. Diflubenzuron affects gamma-thioGTP stimulated Ca2+ transport in vitro in intracellular vesicles from the integument of the newly molted American cockroach Periplaneta americana L. Insect Biochemistry and Molecular Biology, 24: 10091015.Google Scholar
Pineda, S., Smagghe, G., Schneider, M.I., Estal, P.D., Vinuela, E., Martinez, A.M. 2006. Toxicity and pharmacokinetics of spinosad and methoxyfenozide to Spodoptera littoralis (Lepidoptera: Noctuidae). Environmental Entomology, 35: 856864.Google Scholar
Post, L.C., de Jong, B.J., Vincent, W.R. 1974. 1-(2, 6-disubstituted benzoyl)-3-phenylurea insecticides: inhibitors of chitin synthesis. Pesticide Biochemistry and Physiology, 4: 473483.Google Scholar
Reinke, M.D.Barrett, B.A. 2007. Fecundity, fertility and longevity reductions in adult oriental fruit moth (Lepidoptera: Tortricidae) exposed to surfaces treated with the ecdysteroid agonists tebufenozide and methoxyfenozide. Journal of Entomological Science, 42: 457466.Google Scholar
Reissig, W.H. 1978. Biology and control of the obliquebanded leafroller on apples. Journal of Economic Entomology, 71: 804809.Google Scholar
Reissig, W.H., Stanley, B.H., Hebding, H.E. 1986. Azinphosmethyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology, 79: 329333.Google Scholar
Sanderson, E.D.Jackson, A.D. 1909. The oblique-banded leafroller. Journal of Economic Entomology, 2: 391401.Google Scholar
SAS Institute. 2002. SAS/STAT user's guide, 7th edition. SAS Institute, Cary, North Carolina, United States of America.Google Scholar
Shorey, H.H.Hale, R.L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58: 522524.Google Scholar
Smirle, M.J., Lowery, D.T., Zurowski, C.L. 2002. Resistance and cross-resistance to four insecticides in populations of obliquebanded leafroller (Lepidoptera: Tortricidae). Journal of Economic Entomology, 95: 820825.Google Scholar
Soltani, N.Soltani-Mazouni, N. 1992. Diflubenzuron and oogenesis in codling moth, Cydia pomonella (L.). Pesticide Science, 34: 257261.Google Scholar
Suh, C.P.C., Orr, D.B., Van Duyn, J.W. 2000. Effect of insecticides on Trichogramma exigum (Hymenoptera: Trichogrammatidae) preimaginal development and adult survival. Journal of Economic Entomology, 93: 577583.Google Scholar
Sun, X., Barrett, B.A., Biddinger, D.J. 2000. Fecundity and fertility reductions in adult leafroller exposed to surfaces treated with the ecdysteroid agonists tebufenozide and methoxyfenozide. Entomologia Experimentalis et Applicata, 94: 7383.Google Scholar
United States Environmental Protection Agency. 2006. Proposed decisions for the remaining uses of azinphos-methyl [online]. EPA-HQ-OPP-2005-0061-0134. Available from http://www.epa.gov/oppsrrd1/reregistration/azm/azm_remaining_uses.pdf [accessed 28 September 2013].Google Scholar
Wise, J.C., Kim, K., Hoffmann, E., Vandervoort, C., Gökçe, A., Whalon, M.E. 2007. Novel life stage targets against plum curculio, Conotrachelus nenuphar (Herbst), in apple integrated pest management. Pest Management Science, 63: 737742.Google Scholar
Wise, J.Whalon, M. 2009. A systems approach to IPM integration, ecological assessment and resistance management in tree fruit orchards. In Biorational control of arthropod pests: application and resistance management . Edited by I. Ishaaya and A. Rami Horowitz. Springer Publishing Ltd., Dordrecht, The Netherlands. Pp. 325345.Google Scholar