Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T09:53:58.706Z Has data issue: false hasContentIssue false

TOXICITY OF INSECTICIDES USED IN CITRUS TO APHYTIS MELINUS DEBACH (HYMENOPTERA: APHELINIDAE) AND RHIZOBIUS LOPHANTHAE (BLAISD.) (COLEOPTERA: COCCINELLIDAE)

Published online by Cambridge University Press:  31 May 2012

T.S. Bellows Jr.
Affiliation:
Department of Entomology, University of California, Riverside, California, USA 92521
J.G. Morse
Affiliation:
Department of Entomology, University of California, Riverside, California, USA 92521

Abstract

The 48-h toxicities of freshly deposited residues of 28 insecticides against Aphytis melinus DeBach and Rhizobius lophanthae (Blaisd.) were evaluated at various rates. Rates as high as 4-fold the recommended field rate of several materials (formulated plant alkaloids, amitraz, formulated Bacillus thuringiensis Berliner endotoxin or exotoxin, and cryolite) revealed little mortality to either species. Concentration–mortality regressions were quantified for the remaining materials, which included five carbamates, a macrocyclic lactone, eight organophosphates, and four pyrethroids. Of these, pyrethroids in general were most toxic, followed by carbamates, and then organophosphates, to both species. Most materials tested were more toxic to A. melinus than to R. lophanthae.

Résumé

La toxicité des résidus de 28 insecticides fraîchement appliqués en diverses doses a été mesurée après 48 h chez Aphytis melinus DeBach et Rhizobius lophanthae (Blaisd.). Des doses même quatre fois plus élevées que la dose d’application recommandée en nature de plusieurs substances (diverses préparations d’alcaloïdes végétaux, amitraz, préparation d’endotoxine ou d’exotoxine de Bacillus thuringiensis Berliner, cryolite) ont causé peu de mortalité chez l’une ou chez l’autre espèce. Des régressions concentration–mortalité ont permis d’évaluer la toxicité d’autres substances, cinq carbamates, une lactone macrocyclique, huit organophosphates et quatre pyréthroïdes. Ce sont les pyréthroïdes qui se sont avérées les plus toxiques, suivies des carbamates, puis des organophosphates, chez les deux espèces. La plupart des substances étaient plus toxiques chez A. melinus que chez R. lophanthae.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Bailey, J.B., and Morse, J.G. (Eds.). Citrus Treatment Guide. University of California Division of Agricultural Science Publication 2903. Oakland, CA.Google Scholar
Bellows, T.S. Jr., and Morse, J.G.. 1988. Residual toxicity following dilute or low volume application of insecticides used for control of California red scale (Homoptera: Diaspididae) to four beneficial species in a citrus agroecosystem. Journal of Economic Entomology 81: 892898.CrossRefGoogle Scholar
Bellows, T.S. Jr., Morse, J.G., and Gaston, L.K.. 1992. Residual toxicity of insecticides used for control of lepidopteran insects in citrus to Euseius stipulatus Athias-Henriot (Acarina: Phytoseiidae). Journal of Applied Entomology 113: 493501.CrossRefGoogle Scholar
Bellows, T.S. Jr., Morse, J.G., and Gaston, L.K.. 1993. Residual toxicity of pesticides used for lepidopteran insect control on citrus to Aphytis melinus DeBach (Hymenoptera: Aphelinidae). The Canadian Entomologist 125: 9951001.CrossRefGoogle Scholar
Bellows, T.S. Jr., Morse, J.G., Gaston, L.K., and Bailey, J.B.. 1988. The fate of two systemic insecticides and their impact on two phytophagous and a beneficial arthropod in a citrus agroecosystem. Journal of Economic Entomology 81: 899904.CrossRefGoogle Scholar
Bellows, T.S. Jr., Morse, J.G., Hadjidemetriou, D.G., and Iwata, Y.. 1985. Residual toxicity of four insecticides used for control of citrus thrips (Thysanoptera: Thripidae) on three beneficial species in a citrus agroecosystem. Journal of Economic Entomology 78: 681686.CrossRefGoogle Scholar
Haney, P.B., Morse, J.G., Luck, R.F., Griffiths, H., Grafton-Cardwell, E.E., and O'Connell, N.V.. 1992. Reducing Insecticide Use and Energy Costs in Citrus Pest Management. University of California Statewide Integrated Pest Management Project Publication 15: 62 pp.Google Scholar
Morse, J.B., and Bellows, T.S. Jr., 1986. Toxicity of major citrus insecticides to Aphytis melinus (Hymenoptera: Aphelinidae) and Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). Journal of Economic Entomology 79: 311314.CrossRefGoogle Scholar
Morse, J.G., Bellows, T.S. Jr., Gaston, L.K., and Iwata, Y.. 1987. Residual toxicity of acaricides to three beneficial species on California citrus. Journal of Economic Entomology 80: 953960.CrossRefGoogle Scholar
Morse, J.G., Bellows, T.S. Jr., and Iwata, Y.. 1986. Technique for evaluating residual toxicity of insecticides to motile insects. Journal of Economic Entomology 79: 281283.CrossRefGoogle Scholar
Morse, J.G., and Brawner, O.L.. 1986. Toxicity of pesticides to Scirtothrips citri (Thysanoptera: Thripidae) and implications to resistance management. Journal of Economic Entomology 79: 565570.CrossRefGoogle Scholar
Munger, F. 1942. A method for rearing citrus thrips in the laboratory. Journal of Economic Entomology 35: 373375.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics. SAS Institute, Cary, NC. pp. 639645.Google Scholar