Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T07:27:07.195Z Has data issue: false hasContentIssue false

Terrestrial arthropod abundance and phenology in the Canadian Arctic: modelling resource availability for Arctic-nesting insectivorous birds

Published online by Cambridge University Press:  12 February 2013

Elise Bolduc*
Affiliation:
Département de biologie & Centre d’études nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
Nicolas Casajus
Affiliation:
Département de biologie & Centre d’études nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
Pierre Legagneux
Affiliation:
Département de biologie & Centre d’études nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
Laura McKinnon
Affiliation:
Département de biologie & Centre d’études nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
H. Grant Gilchrist
Affiliation:
National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, Ontario, Canada KJA OH3
Maria Leung
Affiliation:
Wild Tracks Ecological Consulting, 39 Harbottle Road, Whitehorse, Yukon, Canada Y1A 5T2
R.I. Guy Morrison
Affiliation:
National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive (Raven Road), Ottawa, Ontario, Canada KJA OH3
Don Reid
Affiliation:
Wildlife Conservation Society Canada, PO Box 31127, Whitehorse, Yukon, Canada Y1A 5T2
Paul A. Smith
Affiliation:
Smith and Associates Ecological Research Ltd, 772 – 7th Conc. South, Pakenham, Ontario, Canada K0A 2X0
Christopher M. Buddle
Affiliation:
Department of Natural Resource Sciences, McGill University 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Joël Bêty
Affiliation:
Département de biologie & Centre d’études nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
*
1Corresponding author (e-mail: [email protected]).

Abstract

Arctic arthropods are essential prey for many vertebrates, including birds, but arthropod populations and phenology are susceptible to climate change. The objective of this research was to model the relationship between seasonal changes in arthropod abundance and weather variables using data from a collaborative pan-Canadian (Southampton, Herschel, Bylot, and Ellesmere Islands) study on terrestrial arthropods. Arthropods were captured with passive traps that provided a combined measure of abundance and activity (a proxy for arthropod availability to foraging birds). We found that 70% of the deviance in daily arthropod availability was explained by three temperature covariates: mean daily temperature, thaw degree-day, and thaw degree-day2. Models had an adjusted R2 of 0.29–0.95 with an average among sites and arthropod families of 0.67. This indicates a moderate to strong fit to the raw data. The models for arthropod families with synchronous emergence, such as Tipulidae (Diptera), had a better fit (average adjusted R2 of 0.80) than less synchronous taxa, such as Araneae (R2 = 0.60). Arthropod abundance was typically higher in wet than in mesic habitats. Our models will serve as tools for researchers who want to correlate insectivorous bird breeding data to arthropod availability in the Canadian Arctic.

Résumé

Dans la toundra arctique, les arthropodes constituent des proies essentielles pour de nombreux vertébrés dont les oiseaux. Cependant, les populations d'arthropodes et leur phénologie sont susceptibles de subir des modifications face aux changements climatiques. Notre étude utilise des données sur les arthropodes terrestres provenant d'une initiative pancanadienne (Îles Southampton, Herschel, Bylot et Ellesmere), afin de modéliser la relation entre les changements saisonniers d'abondance d'arthropodes et les variables environnementales. Des pièges fournissant une mesure combinée de l'abondance et de l'activité des arthropodes ont été utilisés afin d'obtenir un indice de la disponibilité des arthropodes pour les oiseaux. Dans nos modèles, trois covariables liées à la température (température, degrés-jours et degrés-jours2) expliquent 70% de la déviance. Selon les sites et les familles d'arthropodes modélisés, les R2 ajustés des modèles ont variés de 0.29–0.95 (moyenne de 0.67). Les modèles pour les familles d'arthropodes ayant une émergence synchronisée, comme les Tipulidae (Diptera), avaient de meilleurs R2 ajustés (0.80 en moyenne) comparativement aux groupes dont la disponibilité est plus répartie dans le temps, comme les araignées (0.60). L'abondance d'arthropodes était généralement plus grande dans les milieux humides que dans les milieux plus secs. Nos modèles pourront servir d'outil aux chercheurs qui désireraient corréler leurs données sur la reproduction des insectivores avec des données sur la disponibilité d'arthropodes dans l'Arctique Canadien.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ale, S.B., Morris, D.W., Dupuch, A., Moore, D.E. 2011. Habitat selection and the scale of ghostly coexistence among Arctic rodents. Oikos, 120: 11911200 . doi:10.1111/j.1600-0706.2010.18933.x.CrossRefGoogle Scholar
Arctic Climate Impact Assessment. 2004. Impacts of warming climate: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 116 . doi:10.1046/j.1365-2486.2002.00451.x.CrossRefGoogle Scholar
Berteaux, D., Humphries, M.M., Krebs, C.J., Lima, M., McAdam, A.G., Pettorelli, N., et al. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research, 32: 151158.CrossRefGoogle Scholar
Both, C.Visser, M.E. 2001. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411: 296298.CrossRefGoogle Scholar
Committee for Holarctic Shorebird Monitoring. 2004. Monitoring Arctic-nesting shorebirds: an international vision for the future. Wader Study Group Bulletin, 103: 25.Google Scholar
Danks, H.V. 1971. A note on the early season food of arctic migrants. Canadian Field-Naturalist, 85: 7172.Google Scholar
Danks, H.V. 1981. Arctic arthropods: a review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa, Canada.Google Scholar
Danks, H.V. 1992. Arctic insects as indicators of environmental change. Arctic, 45: 159166.CrossRefGoogle Scholar
Danks, H.V.Oliver, D.R. 1972. Seasonal emergence of some high Arctic Chironomidae (Diptera). The Canadian Entomologist, 104: 661686.CrossRefGoogle Scholar
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105: 66686672 . doi:10.1073/pnas.0709472105.CrossRefGoogle ScholarPubMed
Dickey, M.-H., Gauthier, G., Cadieux, M.-C. 2008. Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Global Change Biology, 14: 19731985 . doi:10.1111/j.1365-2486.2008.01622.x.CrossRefGoogle Scholar
Efron, B.Tibshirani, R.J. 1993. An introduction to the bootstrap. In Monographs on statistics and applied probability. Edited by B. Raton. Chapman & Hall, London, United Kingdom. Pp. 413425.Google Scholar
Elton, C.S. 1927. Animal ecology. Macmillan Company, New York, United States of America.Google Scholar
Frazier, M.R., Huey, R.B., Berrigan, D. 2006. Thermodynamics constrains the evolution of insect population growth rates: “Warmer is better”. American Naturalist, 168: 512520 . doi:10.1086/506977.CrossRefGoogle Scholar
Gauthier, G., Berteaux, D., Bêty, J., Tarroux, A., Therrien, J.-F., McKinnon, L., et al. 2011. The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecosystems. Ecoscience, 18: 223235 . doi:10.2980/18-3-3453.CrossRefGoogle Scholar
Gauthier, G., Berteaux, D., Bêty, J., Tarroux, A., Therrien, J.F., McKinnon, L., et al. 2012. The Arctic tundra food web in a changing climate and the role of exchanges between ecosystems. Ecoscience, 18: 223235.CrossRefGoogle Scholar
Goulson, D., Derwent, L.C., Hanley, M.E., Dunn, D.W., Abolins, S.R. 2005. Predicting calyptrate fly populations from the weather, and probable consequences of climate change. Journal of Applied Ecology, 42: 795804.CrossRefGoogle Scholar
Gullan, P.J.Cranston, P.S. 2005. The insects: an outline of entomology. Blackwell Publishing, Oxford, United Kingdom.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 19651978 . doi:10.1002/joc.1276.CrossRefGoogle Scholar
Hodar, J.A. 1996. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecologica, 17: 421433.Google Scholar
Hodkinson, I.D.Coulson, S.J. 2004. Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos, 106: 427431.CrossRefGoogle Scholar
Hodkinson, I.D., Coulson, S.J., Webb, N.R., Block, W., Strathdee, A.T., Bale, J.S., et al. 1996. Temperature and the biomass of flying midges (Diptera: Chironomidae) in the high Arctic. Oikos, 75: 241248.CrossRefGoogle Scholar
Hodkinson, I.D., Webb, N.R., Bale, J.S., Block, W., Coulson, S.J., Strathdee, A.T. 1998. Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on spitsbergen. Arctic and Alpine Research, 30: 306313.CrossRefGoogle Scholar
Høye, T.T.Forchhammer, M.C. 2008. The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations [online]. BMC Ecology, 8. Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390509/pdf/1472-6785-8-8.pdf [accessed 27 December 2012].CrossRefGoogle Scholar
Høye, T.T., Post, E., Meltofte, H., Schmidt, N.M., Forchhammer, M.C. 2007. Rapid advancement of spring in the High Arctic. Current Biology, 17: R449R451.CrossRefGoogle ScholarPubMed
Huey, R.B.Berrigan, D. 2001. Temperature, demography, and ectotherm fitness. The American Naturalist, 158: 204210.CrossRefGoogle ScholarPubMed
Jenouvrier, S., Caswell, H., Barbraud, C., Holland, M., Stroeve, J., Weimerskirch, H. 2009. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences of the United States of America, 106: 18441847.CrossRefGoogle ScholarPubMed
Klaassen, M., Lindstrom, A., Meltofte, H., Piersma, T. 2001. Ornithology – Arctic waders are not capital breeders. Nature, 413: 794794 . doi:10.1038/35101654.CrossRefGoogle Scholar
MacLean, S.F. 1973. Life cycle and growth energetics of the Arctic Crane fly Pedicia hannai antenatta. Oikos, 24: 436443.CrossRefGoogle Scholar
MacLean, S.F.Pitelka, F.A. 1971. Seasonal patterns of abundance of tundra arthropods near Barrow. Arctic, 24: 1940.CrossRefGoogle Scholar
McCullagh, P.Nelder, J.A. 1989. Generalized linear models. Chapman and Hall, London, United Kingdom.CrossRefGoogle Scholar
McKinnon, L., Picotin, M., Bolduc, E., Juillet, C., Bêty, J. 2012. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Canadian Journal of Zoology, 90: 961971 . doi:10.1139/z2012-064.CrossRefGoogle Scholar
Meltofte, H.Høye, T.T. 2007. Reproductive response to fluctuating lemming density and climate of the long-tailed Skua Stercorarius longicaudus at Zackenberg, Northeast Greenland, 1996–2006. Dansk Orn Foren Tidsskr, 101: 109119.Google Scholar
Meltofte, H., Høye, T.T., Schmidt, N.M. 2008. Effects of food availability, snow and predation on breeding performance of waders at Zackenberg. In High-Arctic ecosystem dynamics in a changing climate. Edited by H. Meltofte, T.R. Christensen, B. Elberling, M.C. Forchammer, and M. Rasch. Elsevier Academic Press Inc., San Diego, California, United States of America. Pp. 325341.CrossRefGoogle Scholar
Morrison, R.I.G., Davidson, N.C., Piersma, T. 2005. Transformations at high latitudes: why do red knots bring body stores to the breeding grounds? Condor, 107: 449457 . doi:10.1650/7614.CrossRefGoogle Scholar
Pearce-Higgins, J.W. 2010. Using diet to assess the sensitivity of northern and upland birds to climate change. Climate Research, 45: 119130 . doi:10.3354/cr00920.CrossRefGoogle Scholar
Pearce-Higgins, J.W.Yalden, D.W. 2004. Habitat selection, diet, arthropod availability and growth of a moorland wader: the ecology of European Golden Plover Pluvialis apricaria chicks. Ibis, 146: 335346.CrossRefGoogle Scholar
Pearce-Higgins, J.W., Yalden, D.W., Dougall, T., Beale, C. 2009. Does climate change explain the decline of a trans-Saharan Afro-Palaearctic migrant? Oecologia, 159: 649659 . doi:10.1007/s00442-008-1242-4.CrossRefGoogle ScholarPubMed
Pearce-Higgins, J.W., Yalden, D.W., Whittingham, M.J. 2005. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia, 143: 470476.CrossRefGoogle ScholarPubMed
Picotin, M. 2008. Variation climatique, abondance d'arthropodes et phénologie de la reproduction chez deux espèces de limicoles nichant dans le haut ArctiqueMaster. Université du Québec à Rimouski, Rimouski, Québec, Canada.Google Scholar
Post, E., Forchhammer, M.C., Bret-Harte, M.S., Callaghan, T.V., Christensen, T.R., Elberling, B., et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science, 325: 13551358 . doi:10.1126/science.1173113.CrossRefGoogle ScholarPubMed
Rogers, L.E., Buschbom, R.L., Watson, C.R. 1977. Length–weight relationships of shrub-steppe invertebrates. Annals of the Entomological Society of America, 70: 5153.CrossRefGoogle Scholar
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., Pounds, J.A. 2003. Fingerprints of global warming on wild animals and plants. Nature, 421: 5760.CrossRefGoogle ScholarPubMed
Roy, D.B., Rothery, P., Moss, D., Pollard, E., Thomas, J.A. 2001. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology, 70: 201217.CrossRefGoogle Scholar
Saether, B.-E. 1997. Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology and Evolution, 12: 143149.CrossRefGoogle ScholarPubMed
Sage, R.D. 1982. Wet and dry-weight estimates of insects and spiders based on length. American Midland Naturalist, 108: 407411.CrossRefGoogle Scholar
Sample, B.E., Cooper, R.J., Greer, R.D., Withmore, R.C. 1993. Estimation of insect biomass by length and width. American Midland Naturalist, 129: 234240.CrossRefGoogle Scholar
Schekkerman, H., Tulp, I., Calf, K.M., de Leeuw, J.J. 2004. Studies on breeding shorebirds at Medusa Bay, Taimyr, in summer 2002 [online]. In Alterra report 922. Alterra, Wageningen, The Netherlands. Available from http://edepot.wur.nl/23058 [accessed 30 December 2012].Google Scholar
Schekkerman, H., Tulp, I., Piersma, T., Visser, G.H. 2003. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia, 134: 332342.CrossRefGoogle ScholarPubMed
Smith, P.A., Gilchrist, G.H., Smith, J.N.M. 2007. Effects of nest habitat, food, and parental behavior on shorebird nest success. The Condor, 109: 1531 . doi:10.1650/0010-5422(2007)109[15:eonhfa]2.0.co;2.CrossRefGoogle Scholar
Strathdee, A.T., Bale, J.S., Block, W.C., Coulson, S.J., Hodkinson, I.D., Webb, N.R. 1993. Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Oecologia, 96: 457465.CrossRefGoogle ScholarPubMed
Thomas, D.W., Blondel, J., Perret, P., Lambrechts, M.M., Speakman, J.R. 2001. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science, 291: 25982600.CrossRefGoogle ScholarPubMed
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., et al. 2004. Extinction risk from climate change. Nature, 427: 145148 . doi:10.1038/nature02121.CrossRefGoogle ScholarPubMed
Tulp, I. 2007. The Arctic pulse, timing of breeding in long-distance migrant shorebirds [online]. Ph.D. thesis, University of Groningen. Available from http://www.waddenacademie.nl/fileadmin/inhoud/pdf/06-wadweten/Proefschriften/Thesis_ITulp_verkl.pdf [accessed 30 December 2012].Google Scholar
Tulp, I.Schekkerman, H. 2001. Studies on breeding shorebirds at Medusa Bay, Taimyr, in summer 2001 [online]. In Alterra report 451. Alterra, Wageningen, The Netherlands. Available from http://edepot.wur.nl/21801 [accessed 30 December 2012].Google Scholar
Tulp, I.Schekkerman, H. 2008. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic, 61: 4860.CrossRefGoogle Scholar
Visser, M.E. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B – Biological Sciences, 275: 649659 . doi:10.1098/rspb.2007.0997.CrossRefGoogle ScholarPubMed
Wagner, T.L., Olson, R.L., Willers, J.L. 1991. Modeling arthropod development time. Journal of Agricultural Entomology, 8: 251270.Google Scholar
Whittaker, J.B.Tribe, N.P. 1998. Predicting numbers of an insect (Neophilaenus lineatus: Homoptera) in a changing climate. Journal of Animal Ecology, 67: 987991.CrossRefGoogle Scholar
Wigglesworth, V.B. 1972. The principles of insect physiology. Chapman and Hall, London, United Kingdom.CrossRefGoogle Scholar