Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:22:00.476Z Has data issue: false hasContentIssue false

SUSCEPTIBILITY OF IPS CALLIGRAPHUS (GERMAR) AND DENDROCTONUS FRONTALIS ZIMMERMANN (COLEOPTERA: SCOLYTIDAE) TO COLEOPTERAN-ACTIVE BACILLUS THURINGIENSIS, A BACILLUS METABOLITE, AND AVERMECTIN B1

Published online by Cambridge University Press:  31 May 2012

James H. Cane
Affiliation:
Department of Entomology and Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama, USA 36849-5413
Hugh E. Cox
Affiliation:
Department of Entomology and Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama, USA 36849-5413
William J. Moar
Affiliation:
Department of Entomology and Alabama Agricultural Experiment Station, Auburn University, Auburn, Alabama, USA 36849-5413

Abstract

A simple, reliable feeding bioassay was developed for screening certain biorational insecticides with potential use against pine bark beetles. Adult Ips calligraphus and Dendroctonus frontalis were fed freeze-dried phloem fortified with Avermectin B1, Bacillus thuringiensis with known coleopteran activity, or a bacterial metabolite (R003). Avermectin B1 was toxic to adult I. calligraphus by 4 days at an LC50 of 0.36 μg AI/g of diet. R003 was active against both beetle species, yielding 85–100% mortality after 10 days exposure to a concentration of 360 μg/g of diet. No B. thuringiensis product was toxic at a discriminating concentration of 200 μg of spore/crystal preparation per gram of diet. Beetle mortality on untreated diet remained <10% over the 4–10 days duration of feeding trials. Unadulterated, lyophilized phloem diet did not spoil during bioassays, provided that tanned beetles were taken for bioassays before they emerged from their natal host bolts. Microbial products with scolytid activity, such as Avermectin B1 and R003, could have future value for limiting bark beetle infestations of individual trees or small stands in urban or ecologically sensitive forests. Innovative strategies for delivery would have to be developed, however, to circumvent the cryptic habits of these phloeophagous beetles.

Résumé

Un test d’alimentation simple et efficace a été mis au point pour évaluer l’efficacité de certains insecticides biologiques sur les scolytes parasites des pins. Des adultes d’Ips calligraphus et de Dendroctonus frontalis ont été nourris de phloème séché à froid et fortifié d’Avermectine B1, de bactéries Bacillus thuringiensis efficaces contre les coléoptères, ou d’un metabolite de la bactérie (R003). L’Avermectine B1 s’est avérée toxique chez les adultes d’I. calligraphus après 4 jours avec une valeur de LC50 de 0,36 μm IA/g d’aliment. Le métabolite R003 est efficace chez les deux espèces et a entraîné une mortalité de 85–100% après 10 jours à une concentration de 360 μg/g d’aliment. Aucun produit relié au bacille B. thuringiensis ne s’est avéré toxique à une concentration discriminate de 200 μg par g d’aliment d’une préparation spores/cristaux. La mortalité des coléoptères témoins a été évaluée à moins de 10% au cours des test alimentaires de 4–10 jours. Le phloème lyophilisé, non modifié, se conserve bien durant les tests si on s’assure que les coléoptères qui ont déjà atteint leur coloration adulte et qui servent aux tests sont recueillis avant leur émergence de l’hôte où ils sont enfermés. Les produits microbiens à activité scolycide, tels l’Avermectine B1 et le R003, pourront sans doute s’avérer très utiles dans la lutte contre les infestations de scolytes des écorces sur des arbres en particulier ou dans les petits boisés urbains ou les forêts écologiquement fragiles. Des stratégies d’application devront cependant être développées pour contourner le problème des habitudes fouisseuses de ces coléoptères phloéophages.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, L.S. 1990. Response of the cottonwood leaf beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. san diego. Environmental Entomology 19: 428431.CrossRefGoogle Scholar
Borden, J.H. 1992. Two tree baiting tactics for the management of bark beetles with semiochemicals. Journal of Applied Entomology 114: 201207.CrossRefGoogle Scholar
Chen, N.-M., and Borden, J.H.. 1989. Adverse effect of fenoxycarb on reproduction by the California five spined Ips, Ips paraconfusus Lanier (Coleoptera: Scolytidae). The Canadian Entomologist 121: 10591068.CrossRefGoogle Scholar
Dahlsten, D.L. 1982. Relationships between bark beetles and their natural enemies. pp. 140–182 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers. University of Texas Press, Austin, TX. 527 pp.Google Scholar
Flexner, J.L., Lighthart, B., and Croft, B.A.. 1986. The effects of microbial pesticides on non-target, beneficial arthropods. Agriculture, Ecosystems and the Environment 16: 203254.CrossRefGoogle Scholar
Gelernter, W.D. 1990. Targetting insecticide-resistant markets: New developments in microbial-based products. pp. 105–117 in Green, M.B., LeBaron, H.M., and Moberg, W.K. (Eds.), Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. American Chemical Society, Washington, DC. 496 pp.Google Scholar
Herrnstadt, C., Soares, G.G., Wilcox, E.R., and Edwards, D.L.. 1985. A new strain of Bacillus thuringiensis with activity against coleopteran insects. Bio/Technology 4: 305308.Google Scholar
Höfte, H., and Whiteley, H.R.. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Reviews 53: 242255.CrossRefGoogle ScholarPubMed
Houle, C., Hartmann, G.C., and Wasti, S.S.. 1987. Infectivity of eight species of entomogenous fungi to the larvae of the elm bark beetle, Scolytus multistriatus (Marsham). Journal of the New York Entomological Society 95: 1418.Google Scholar
Hunt, D.W.A., Borden, J.H., Rahe, J.E., and Whitney, H.S.. 1984. Nutrient-mediated germination of Beauveria bassiana conidia on the integument of the bark beetle Dendroctonus ponderosae (Coleoptera: Scolytidae). Journal of Invertebrate Pathology 44: 304314.CrossRefGoogle Scholar
Imnadze, T.S. 1978. Characteristics of strains of Bacillus thuringiensis serotype I isolated from bark beetles in Georgia. Soobshcheniya Akademii Nauk Gruzinskoi SSR 1978 92(2): 457460. [Review of Applied Entomology A 68: 2616.]Google Scholar
Jassim, H.K., Foster, H.A., and Fairhurst, C.P.. 1990. Biological control of Dutch elm disease: Bacillus thuringiensis as a potential control agent for Scolytus scolytus and S. multistriatus. Journal of Applied Bacteriology 69: 563568.CrossRefGoogle Scholar
Kamenek, L.K. 1988. Effect of Bacillus thuringiensis and its delta-endotoxin on adults of the mustard beetle Phaedon cochleariae F. Sibirskii Vestnik Sel'shokhozyaistvennoi Nauki 1: 3739.Google Scholar
Krieg, A., Huger, A.M., Langenbruch, G.A., and Schnetter, W.. 1983. Bacillus thuringiensis var. tenebrionis, a new pathogen effective against larvae of Coleoptera (Tenebrio molitor, Agelastica alni, Leptinotarsa decemlineata). Zeitschrift für Angewandte Entomology 96: 500508.CrossRefGoogle Scholar
Lasota, J.A., and Dybas, R.A.. 1991. Avermectins, a novel class of compounds: Implications for use in arthropod pest control. Annual Review of Entomology 36: 91117.CrossRefGoogle ScholarPubMed
Moar, W., Trumble, J.T., and Federici, B.A.. 1989. Comparative toxicity of spores and crystals from the NRD-12 and HD-1 strains of Bacillus thuringiensis subsp. kurstaki to neonate Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Economic Entomology 82: 15931603.CrossRefGoogle Scholar
Ohba, M., Iwahana, H., Asano, S., Suzuki, N., Sato, R., and Hori, H.. 1992. A unique isolate of Bacillus thuringiensis with a high larvicidal activity specific for scarabaeid beetles. Letters of Applied Microbiology 14: 5457.CrossRefGoogle Scholar
Pabst, G.S., and Sikorowski, P.P.. 1980. Susceptibility of southern pine beetle (Dendroctonus frontalis) on oligidic medium to Paecilomyces viridis and also Beauveria bassiana, and Metarhizium anisopliae. Journal of the Georgia Entomological Society 15: 235240.Google Scholar
Raffa, K.F. 1989. Genetic engineering of trees to enhance resistance to insects. Bioscience 39: 524534.CrossRefGoogle Scholar
Reed, D.K., and Reed, G.L.. 1986. Activity of Avermectin B1 against the striped cucumber beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 79: 943947.CrossRefGoogle Scholar
Robison, D. J., McCown, B.H., and Raffa, K.F.. 1994. Responses of gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) to transgenic poplar, Populus spp., containing a Bacillus thuringiensis d-endotoxin gene. Environmental Entomology 23: 10301041.CrossRefGoogle Scholar
Suzuki, N., Hori, H., and Asano, S.. 1993. Sensitivity of cupreous chafer, Anomala cuprea (Coleoptera: Scarabaeidae), in different larval stages to Bacillus thuringiensis serovar japonensis strain Buibui. Applied Entomology and Zoology 28: 403405.CrossRefGoogle Scholar
Tabashnik, B.E., Cushing, N.L., Finson, N., and Johnson, M.W.. 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 83: 16711676.CrossRefGoogle Scholar
Tailor, R., Tippett, J., Gibb, G., Pells, S., Pike, D., Jordan, L., and Ely, S.. 1992. Identification and characterization of a novel Bacillus thuringiensis δ-endotoxin entomocidal to coleopteran and lepidopteran larvae. Molecular Microbiology 6: 12111217.CrossRefGoogle ScholarPubMed
Werner, R.A., and Holsten, E.H.. 1992. Effectiveness of Sevin with and without diesel for remedial control of spruce beetles (Coleoptera: Scolytidae) in infested spruce in Alaska. Journal of Economic Entomology 85: 473476.CrossRefGoogle Scholar
Whitney, H.S. 1982. Relationships between bark beetles and symbiotic organisms. pp. 183–211 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark Beetles in North American Conifers. University of Texas Press, Austin, TX. 527 pp.Google Scholar
Wilcox, D.R., Shivakumar, A.G., Melin, B.E., Miller, M.F., Benson, T.A., Schopp, C.W., Casuto, D., Gundling, G. J., Bolling, T.J., Spear, B.B., and Fox, J.L.. 1986. Genetic engineering of bioinsecticides. pp. 395–413 in Inouye, M., and Sarma, R. (Eds.), Protein Engineering: Applications in Science, Medicine and Industry. Academic Press, Orlando, FL. 424 pp.Google Scholar
Williams, S., Friedrich, L., Dincher, S., Carozzi, N., Kessman, H., Ward, E., and Ryals, J.. 1992. Chemical regulation of Bacillus thuringiensis d-endotoxin expression in transgenic plants. Bio/Technology 10: 540543.Google Scholar
Wright, J.E. 1984. Biological activity of avermectin B1 against the boll weevil (Coleoptera: Curculionidae). Journal of Economic Entomology 77: 10291032.CrossRefGoogle Scholar
Zehnder, G.W., and Gelernter, W.D.. 1989. Activity of the M-ONE formulation of a new strain of Bacillus thuringiensis against the Colorado potato beetle (Coleoptera: Chrysomelidae): Relationship between susceptibility and insect life stage. Journal of Economic Entomology 82: 756761.CrossRefGoogle Scholar