Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:17:51.419Z Has data issue: false hasContentIssue false

SUCROSE INGESTION BY ZEIRAPHERA CANADENSIS MUT. & FREE. (LEPIDOPTERA: TORTRICIDAE) INCREASES LONGEVITY AND LIFETIME FECUNDITY BUT NOT OVIPOSITION RATE

Published online by Cambridge University Press:  31 May 2012

Allan L. Carroll
Affiliation:
Department of Forest Resources, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
Dan T. Quiring
Affiliation:
Department of Forest Resources, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2

Abstract

In the laboratory, the longevity and fecundity of female Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae) given access to a 10% sucrose solution and water was greater than that of females provided only water. The presence or absence of sucrose did not affect oviposition rate during the first 10 days post-emergence, after which most females denied sucrose died. The enhanced fecundity of sucrose-fed females was due to their increased longevity and, hence, longer oviposition period. Greater longevity, combined with a decrease in oviposition rate and egg viability with age, resulted in a lower average lifetime oviposition rate and percentage viable egg production for females provided sucrose. Although carbohydrate ingestion resulted in increased fecundity and longevity in the laboratory, its effect in nature may be minimal because Z. canadensis usually does not live more than 10 days under field conditions.

Résumé

La longévité et fécondité de Zeiraphera canadensis Mut. & Free. (Lepidoptera : Tortricidae) en laboratoire étaient plus grande chez les femelles ayant accès à une solution de 10% sucrose et à de l’eau, que celle des femelles ayant uniquement accès à de l’eau. Cependant, la presence où l’absence de sucrose n’a pas affecté le taux d’oviposition pendant les 10 premiers jours, après lesquels la plupart des femelles prevées de sucrose sont mortes. La fécondité améliorée des femelles nourrit au sucrose était due à la période d’oviposition prolongé attribuable à une longévité plus grande. Toutefois, bien que l’ingestion de carbohydrates a causé l’augmentation de la période de fécondité et de longévité en laboratoire, son effet en nature est probablement minimal due au fait que Z. canadensis ne vit habituellement pas plus de 10 jours en conditions naturelles.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, H.G., and Baker, I.. 1973. Amino acids in nectar and their evolutionary significance. Nature 241: 543545.CrossRefGoogle Scholar
Berger, A. 1989. Egg weight, batch size and fecundity of the spotted stalk borer, Chilo partellus, in relation to weight of females and time of oviposition. Entomologia exp. appl. 50: 199207.CrossRefGoogle Scholar
Boggs, C.L. 1986. Reproductive strategies of female butterflies: Variation in and constraints on fecundity. Ecol. Ent. 11: 715.CrossRefGoogle Scholar
Cheng, H.H. 1972. Oviposition and longevity of the dark-sided cutworm, Euxoa messoria (Lepidoptera: Noctuidae), in the laboratory. Can. Ent. 104: 919925.CrossRefGoogle Scholar
Engelmann, F. 1970. The Physiology of Insect Reproduction. Pergamon Press, Oxford. 307 pp.Google Scholar
Gilbert, L.E. 1972. Pollen feeding and the reproductive biology of Heliconius butterflies. Proc. Natn. Acad. Sci. 69: 14031407.CrossRefGoogle ScholarPubMed
Gu, H., and Danthanarayana, W.. 1990. The role of availability of food and water to the adult Epiphyas postvittana, the light brown apple moth, in its reproductive performance. Entomologia exp. appl. 54: 101108.CrossRefGoogle Scholar
Gunn, A., and Gatehouse, A.G.. 1985. Effects of the availability of food and water on reproduction in the African armyworm, Spodoptera exempta. Physiol. Ent. 10: 5363.CrossRefGoogle Scholar
Jensen, R.L., Newsom, L.D., and Gibbens, J.. 1974. The soybean looper: Effects of adult nutrition on oviposition, mating frequency, and longevity. J. econ. Ent. 67: 467470.CrossRefGoogle ScholarPubMed
Johansson, A.S. 1963. Feeding and nutrition in reproductive processes in insects. Symp. R. ent. Soc. London 2: 4355.Google Scholar
Lamb, K.P. 1959. Composition of the honeydew of the aphid Brevicoryne brassicae (L.) feeding on swedes (Brassica napobrassica DC.). J. Insect Physiol. 3: 113.CrossRefGoogle Scholar
Leather, S.R. 1984. The effect of adult feeding on the fecundity, weight loss and survival of the pine beauty moth, Panolis flammea (D&S). Oecologia 65: 7074.CrossRefGoogle ScholarPubMed
Lukefahr, M.J., and Martin, D.F.. 1964. The effects of various larval and adult diets on the fecundity and longevity of the bollworm, tobacco budworm, and cotton leafworm. J. econ. Ent. 57: 233235.CrossRefGoogle Scholar
Marshall, L.D. 1990. Intraspecific variation in reproductive effort by female Parapediasia teterrella (Lepidoptera: Pyralidae) and its relation to body size. Can. J. Zool. 68: 4448.CrossRefGoogle Scholar
Moore, R.A., and Singer, M.C.. 1987. Effects of maternal age and adult diet on egg weight in the butterfly Euphydryas editha. Ecol. Ent. 12: 401408.CrossRefGoogle Scholar
Murphy, D.D., Launer, A.E., and Ehrlich, P.R.. 1983. The role of adult feeding in egg production and population dynamics of the checkerspot butterfly Euphydryas editha. Oecologia 56: 257263.CrossRefGoogle ScholarPubMed
Needham, J.G., Traver, J.R., and Hsu, Y.C.. 1935. The Biology of Mayflies. Comstock Publishing Co., New York, NY. 759 pp.Google Scholar
Pilon, J.G. 1965. Bionomics of the spruce budmoth, Zeiraphera ratzeburgiana (Ratz.) Lepidoptera: (Olethreutidae). Phytoprotection 46: 513.Google Scholar
Rose, D.J.W., and Dewhurst, C.F.. 1979. The African armyworm, Spodoptera exempta: Congregation of moths in trees before flight. Entomologia exp. appl. 26: 346348.CrossRefGoogle Scholar
Roy, D.N. 1936. On the role of blood in ovulation in Aedes aegypti. Linn. Bull. ent. Res. 27: 423429.CrossRefGoogle Scholar
Stern, V.M., and Smith, R.F.. 1960. Factors affecting egg production and oviposition in populations of Colias philodice eurytheme Boisduval (Lepidoptera: Pieridae). Hilgardia 29: 411454.CrossRefGoogle Scholar
Thomas, A.W., Borland, S.A., and Greenbank, D.O.. 1980. Field fecundity of the spruce budworm (Lepidoptera: Tortricidae) as determined from regression relationships between egg complement, forewing length, and body weight. Can. J. Zool. 58: 16081611.CrossRefGoogle Scholar
Turgeon, J.J. 1985. Life cycle and behaviour of the spruce budmoth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), in New Brunswick. Can. Ent. 117: 12391247.CrossRefGoogle Scholar
Turgeon, J.J., Nelson, N., and Kettela, E.G.. 1987. Reproductive biology of the spruce budmoth, Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae: Olethreutinae), in New Brunswick. Can. Ent. 119: 361364.CrossRefGoogle Scholar