Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T10:30:53.448Z Has data issue: false hasContentIssue false

Studies on the Cuticle of the Grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae): III. On the Physical Nature of the Transition Region of Insect Waxes1

Published online by Cambridge University Press:  31 May 2012

Extract

It has now been well established that the cuticle of many insects is covered by a discrete layer of lipoidal material. Ramsay (26), Wigglesworth (32), Beament (4), and others have shown that the rate of evaporation-temperature curves from insects are characterized by breaks occuring at a “critical” temperature. In the previous paper of this seriis, Chefurka and Pepper (8) have shown that the rate of evaporation-temperature curves from Melanoplus bivittatus show a transition region from approximately 43 to 50°C.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alexander, P., Kitchener, J. A. and Briscoe, H. V. A. 1944. The effect of waxes and inorganic powders on the transpiration of water through celluloid membranes. Trans. Farad Soc. 40, 1019.CrossRefGoogle Scholar
2.Andrew, E. R. 1950. Molecular motion in certain solid hydrocarbons. J. Chem. Phys. 18, 607618.CrossRefGoogle Scholar
3.Baker, W. O. and Smyth, C. P. 1938. The possibility of molecular rotation m the solid forms of cetyl alcohol and three long-chain ethyl esters. J. Amer. Chem. Soc. 60, 12291236.CrossRefGoogle Scholar
4.Beament, J. W. L. 1945. The curicular lipoids of insects. J. Exp. Biol. 21, 115131.CrossRefGoogle Scholar
5.Bergmann, W. 1938. The composition of the ether extractive from exuviae of the silkworm, Bombyx mori. Ann. Ent. Soc. Amer. 31, 315321.CrossRefGoogle Scholar
6.Blount, B. K., Chibnall, A. C. and Mangouri, H. A. 1937. The wax of white pine chermes. Biochem. J. 31, 13751378.Google Scholar
7.Buckingham, R. 1934. The dielectric constants of ethyl behenate and the molecular volumes of ethyl behenate and hexacosane in the liquid and solid states. Trans Farad. Soc., 30, 377386.CrossRefGoogle Scholar
8.Chefurka, W. and Pepper, J. H. 1955. Studies on the cuticle of the grasshopper Melanoplus bivittatus (Say) (Orthoptera): Acrididae) II. Permeability of the cuticle to water at different temperatures. Can. Ent. 81, 151163.Google Scholar
9.Chibnall, A. C., Piper, S. H., Pollard, A., Williams, E., and Sahai, P. N. 1934. The constitution of the primary alcohols, fatty acids and paraffins present in plant and insect waxes. Biochem. J. 28, 21892208.Google Scholar
10.Chibnall, A. C., Latner, A. L., Williams, E. F. and Ayre, C. A. 1934. The constitution of coccerin. Biochem. J. 28, 313325.CrossRefGoogle ScholarPubMed
11.Crowe, R. W. and Smyth, C. P. 1951. Molecular rotation in some long-chain fatty acid esters in the solid state. J. Amer. Chem. Soc. 73, 54015406.CrossRefGoogle Scholar
12.Crowe, R. W., Hoffman, J. D. and Smyth, C. P. 1952. A new type of disorder affecting the dielectric properties of long-chain esters. J. Chem. Phys. 20, 550555.Google Scholar
13.Daniel, V. 1949. A co-operative transition in a mixed ketone shown by a change of dielectric constant. Nature, London. 163, 725726.Google Scholar
14.Hackman, R. H. 1951. The chemical composition of the wax of the white scale Ceroplastes destructor (Newstead). Arch. Biochem. and Biophys. 33, 150154.CrossRefGoogle ScholarPubMed
15.Hoffman, J. D. and Smyth, C. P. 1950. The mechanism or rotation of long-chain alkyl bromides and other molecules in the solid state. J. Amer. Chem. Soc. 72, 171180.Google Scholar
16.Hoffman, J. D. 1952. Hindered intermoleeular rotation in the solid state; Thermal and dielectric phenomena in long-chain compounds. J. Chem. Phys. 20, 541549.CrossRefGoogle Scholar
17.Hoffman, J. D. and Smyth, C. P. 1949. Molecular rotation in the solid forms of some long-chain alcohols. J. Amer. Chem. Soc. 71, 431439.Google Scholar
18.Lewkowitsch, J. I. and Warburton, G. H. 1921. Chemical Technology of Oils, Fats, and Waxes. London: Macmillan I. 317349.Google Scholar
19.Malkin, T. 1931. Alternation in long-chain compounds. New X-ray data for long-chain methyl esters and iodides and a preliminary thermal examination of the esters. J. Chem. Soc. 27962805.Google Scholar
19.(a)Malkin, R. 1952. The molecular structure and plymorphism of fatty acids and their derivatives. Progress in the Chemistry of Fats and other Lipids. 1, 117, Academic Press, N.Y.Holman, R. T. and Lundberg, W. O. eds.Google Scholar
20.Motz, H. and Trillat, J. J. 1935. Investigations of the structures of extremely thin fatty films by means of electron diffraction. Z. Krist. 91, 248254.Google Scholar
21.Müller, A. 1937. An X-ray investigation of normal paraffins near their melting points Proc. Roy. Soc. London Ser. A. 158, 403414.Google Scholar
22.Müller, A. 1937. The dielectric polarization of n-long chain ketones near their melting points. Proc. Roy. Soc. London Ser. A. 158, 403414.Google Scholar
23.Müller, A. 1938. The dielectric polarization of a long-chain ketone at constant volume and variable temperature. Proc. Roy Soc. London Ser. A. 166, 316324.Google Scholar
24.Pauling, L. 1930. Rotational Motion of Molecules in Crystals. Phys. Rev. 36, 430443.CrossRefGoogle Scholar
25.Phillips, J. W. C. and Mumford, S. A. 1932. The dimorphism of certain alipatic compounds. J. Chem Soc. 898906.CrossRefGoogle Scholar
26.Ramsay, J. A. 1935. The evaporation of water from the cockroach. Jour. Exp. Biol. 373–383, 12.Google Scholar
26.(a)Richards, A. Glenn, Clausen, Marion B. and Smith, Myrtle N.. 1953. Studies on arthropod cuticle. X. The assymetrical penetration of water. J. Cell and Comp. Physiol. 42, 395414.Google Scholar
27.Schultz, F. N. and Becker, M. 1931. Uber Insectenwachse. III. Uber das Wachs der Wollaus (Penphigus xylosti). Biochem. Z. 235, 233239.Google Scholar
28.Shikata, M. 1954. Studies on the structure of the integument of the silkworm, with special reference to its cuticular lipids II. On the physical chemical natures of the ether extractives and their components obtained from exuviae. The Jour. Sericultural Science of Japan, 23, 3543.Google Scholar
29.Slifer, E. H. 1948. Isolation of wax-like material from the shell of the grasshopper egg. Discussions of the Farady Soc. No. 3. 182187.CrossRefGoogle Scholar
30.White, A. H. and Bishop, W. S. 1940. Dielectric evidence of molecular rotation in the crystals of certain non-aromatic compounds. J. Amer. Chem. Soc. 62, 816.CrossRefGoogle Scholar
31.White, A. H., Biggs, B. S. and Morgan, S. O. 1940. Dielectric evidence of molecular rotation in the crystals of certain benzene derivatives. J. Amer. Chem. Soc. 62, 1625.CrossRefGoogle Scholar
32.Wigglesworth, V. B. 1945. Transpiration through the cuticle of insects. J. Exp. Biol. 21, 97114.Google Scholar
33.Woog, P. and Yannaquis, N. 1935. Sur l'orientation des molécules de la cire d'abeille. Compt. Rend. 201, 1400.Google Scholar