Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T05:38:50.078Z Has data issue: false hasContentIssue false

Stilbenes as enhancers for gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhedrovirus

Published online by Cambridge University Press:  02 April 2012

Martin Shapiro*
Affiliation:
Henry A Wallace Beltsville Agricultural Research Center, USDA–ARS, Beltsville, Maryland, United States 20705-2350
Robert A. Argauer
Affiliation:
Henry A Wallace Beltsville Agricultural Research Center, USDA–ARS, Beltsville, Maryland, United States 20705-2350
*
1Corresponding author (e-mail: [email protected]).

Abstract

The stilbenes 4,4′-diaminostilbene-2,2′-disulfonic acid, 4-aminostilbene disulfonic acid, and dinitrostilbene-2,2′-disulfonic acid were tested as enhancers for the gypsy moth, Lymantria dispar (L.), nucleopolyhedrovirus (LdNPV). 4-Amino nitrostilbene disulfonic acid had no effect on the activity (LC50) of LdNPV, whereas both 4,4′-diaminostilbene-2,2′-disulfonic acid and 4-aminostilbene disulfonic acid were inhibitory. Diethylstilbestrol, a stilbene synthetic estrogen, and two synthetic estrogens (i.e., estradiol-17-acetate, estrone acetate) had no effects on viral activity. Two stilbene dyes (i.e., direct yellow 62, brilliant yellow 6) and a stilbene optical brightener (i.e., Tinopal LPW) significantly increased the activity of LdNPV. Activity was increased by approximately 230-fold by Tinopal LPW, 26-fold by direct yellow 62, and 36-fold by brilliant yellow 6. This study demonstrates that some stilbenes can act as enhancers, whereas others do not.

Résumé

Les stilbènes, l'acide 4,4′-diaminostilène-2,2′-disulfonique, l'acide 4-aminostilbène disulfonique et l'acide dinitrostilbène-2,2′-disulfonique, ont été évalués pour leurs effets stimulants sur le nucléopolyédrovirus (LdNPV) de la spongieuse Lymantria dispar(L.). L'acide 4-aminonitrostilbène disulfonique reste sans effet sur l'activité (LC50) de LdNPV, alors que les acides 4,4′-diaminostilbène-2,2′-disulfonique et 4-aminostilbène disulfonique ont des effets inhibiteurs. Le diéthyl stilbestrol, un œstrogène synthétique à base de stilbène, et deux œstrogènes synthétiques (i.e. l'acétate d′œstradiol-17 et l'acétate d′œstrone) se sont révélés sans effet sur l'activité du virus. Deux colorants (jaune direct 62 et jaune brillant 6) et un azurant optique à base de stilbène (i.e. le Tinopal LPW) augmentent significativement l'activité de LdNPV. L'activité est multipliée par un facteur de 230 par le Tinopal LPW, par un facteur de 26 par le jaune direct 62 et par un facteur de 36 par le jaune brillant 6. Cette étude démontre que certains stilbènes peuvent avoir un effet stimulant et d'autres pas.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argauer, R., Shapiro, M. 1997. Fluorescence and relative activities of stilbene optical brighteners as enhancers for the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. Journal of Economic Entomology 90: 416–20CrossRefGoogle Scholar
Bell, R.A., Owens, C.D., Shapiro, M., Tardif, J.G.R. 1981. Development of mass rearing technology. pp 599633in Doane, C.C., McManus, M.L. (Eds), The gypsy moth: research toward integrated pest management. US Department of Agriculture Technical Bulletin 1584Google Scholar
Cain, S. 2000. Breast cancer genetics and the role of tamoxifen in prevention. Journal of the American Academy of Nursing Practice 12: 21–8CrossRefGoogle ScholarPubMed
Carter, P. 1973. Fluorescent whitening agents for the soap and detergent industry. pp 51–6 in Fluorescent whitening agents. Stockholm, Sweden: The Center for Environmental Sciences, Royal Institute of Technology. MVC Report 2Google Scholar
Chiron, H., Drouet, A., Lieutier, F., Payne, H.D., Ernst, D., Sandermann, H. Jr 2000. Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiology 124: 872CrossRefGoogle ScholarPubMed
Cohn, B.A., Wingard, D.L., Patterson, R.C., McPhee, S.J., Gebert, B. 2002. The National DES Education Program: effectiveness of the California health provider intervention. Journal of Cancer Education 17: 40–5Google ScholarPubMed
Darken, M.A. 1961. Application of fluorescent brighteners in biological techniques. Science (Washington DC) 133: 1704–5CrossRefGoogle ScholarPubMed
Darken, M.A. 1962. Absorption and transport of fluorescent brighteners by microorganisms. Applied Microbiology 10: 387–93CrossRefGoogle ScholarPubMed
Derks, W., Creasy, L.L. 1989. The significance of stilbene phytoalexins in the Plasmopara viticola–grapevine interaction. Physiology and Molecular Plant Pathology 34: 189202CrossRefGoogle Scholar
el-Mowafy, A.M., Abou-Zeid, L.A., Edafioghio, I. 2002. Recognition of resveratrol by the human estrogen receptor-alpha: a molecular modeling approach to understand its biological actions. Medical Principles and Practices 11: 8692CrossRefGoogle ScholarPubMed
Farrar, R.R. Jr, Ridgway, R.L. 1997. The celery looper (Lepidoptera: Noctuidae) baculovirus: potency and enhancement by Blankophor BBH against 3 lepidopteran species. Environmental Entomology 26: 1461–9CrossRefGoogle Scholar
Furvik, N.B. 1973. Fluorescent whitening agents in textile industry. pp 4350in Fluorescent whitening agents. Stockholm, Sweden: The Center for Environmental Sciences, Royal Institute of Technology. MVC Report 2Google Scholar
Gunning, J.E. 1976. The DES story. Obstetrics and Gynecology Survey 31: 827–33CrossRefGoogle ScholarPubMed
Hain, R., Reif, H.J., Krause, E., Langebartels, R., Kindl, H., Vorman, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stocker, R.H. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature (London) 361: 153–6CrossRefGoogle Scholar
Hamm, J.J., Shapiro, M. 1992. Infectivity of fall armyworm (Lepidoptera: Noctuidae) nuclear polyhedrosis virus enhanced by a fluorescent brightener. Journal of Economic Entomology 85: 2149–52CrossRefGoogle Scholar
Jansen, E.H., Stephany, R.W. 1985. Effective control for diethylstilbestrol in cattle in the Netherlands. Veterinary Quarterly 7: 35–8CrossRefGoogle ScholarPubMed
Lanter, J. 1966. Properties and evaluation of fluorescent agents. Journal of Society of Dyes and Colourists 82: 125–32CrossRefGoogle Scholar
LeOra Software. 1987. POLO-PC. A users' guide to probit or logit analysis. Berkeley, California; LeOra SoftwareGoogle Scholar
Liehr, J.G., Dague, B.B., Ballatore, A.M. 1985. Reactivity of 4,4′-diethylstilbestrol quinone, a metabolic intermediate of diethylstilbestrol. Carcinogenesis (London) 6: 829–36CrossRefGoogle ScholarPubMed
Lindvall, E. 1973. The use of fluorescent whitening agents (FWA) in the paper industry. pp 5760in Fluorescent whitening agents. Stockholm, Sweden: The Center for Environmental Sciences, Royal Institute of Technology. MVC Report 2Google Scholar
Lu, Y.C., Jiann, B.P., Chang, H.T., Huang, J.K., Chen, W.C., Su, W., Jan, C.R. 2002. Effect of the anti-breast cancer drug tamoxifen on Ca(2+) movement in human osteosarcoma cells. Pharmacology and Toxicology 91: 34–9CrossRefGoogle ScholarPubMed
Maeda, H., Ishida, N. 1967. Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. Journal of Biochemistry 62: 276–8CrossRefGoogle ScholarPubMed
Mazur, N., Koziorowska, J. 1992. Testing of cyclophosphamide and diethylstilbestrol for their ability to enhance virus survival in normal human cells. Polish Journal of Pharmacology 44: 5965Google ScholarPubMed
McConnell, K.R., Aronson, P.S. 1994. Effects of inhibitors on anion exchangers in rabbit renal brush border membrane vesicles. Journal of Biological Chemistry 269: 21489–94CrossRefGoogle ScholarPubMed
Morahan, P.S., Bradley, S.G., Munson, A.E., Duke, S., Marciano-Cabral, F. 1984. Immunotoxic effects of diethylstilbestrol on host resistance: comparison with cyclophosphamide. Leukocyte Biology 35: 329–41CrossRefGoogle ScholarPubMed
Nickle, W.R., Shapiro, M. 1994. Effects of eight brighteners as solar radiation protectants for Steinernema carpocapsae, all strain. Journal of Nematology 26: 782–4Google ScholarPubMed
Piroli, G.G., Torres, A., Pietranera, L., Grillo, C.A., Ferrini, M.G., Lux-Lantos, V., Aoki, A., De Nicola, A.F. 2000. Sexual dimorphism in diethylstilbestrol-induced prolactin pituitary tumors in F344 rats. Neuroendocrinology 72: 8090CrossRefGoogle ScholarPubMed
Pons, J.C., Goujard, C., Derbanne, C., Touraire, M. 1988. Outcome of pregnancy in patients exposed in utero to diethylstilbestrol. Survey by the National College of French Gynecologists and Obstetricians. Gynecology Obstetrics Biology and Reproduction (Paris) 17: 307–16Google ScholarPubMed
Sanders, T.H., McMichael, R.W. Jr, Hendrix, K.W. 2000. Occurrence of resveratrol in edible peanuts. Journal of Agricultural and Food Chemistry 48: 1243–6CrossRefGoogle ScholarPubMed
Schneider, Y., Vincent, F., Duranton, B., Bandolo, L., Gosse, F., Bergmann, C.., Seiler, N., Raul, P. 2000. Antiproliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Letters 158: 8591CrossRefGoogle ScholarPubMed
Shapiro, M., Argauer, R. 1997. Components of the stilbene optical brightener Tinopal LPW as enhancers for the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. Journal of Economic Entomology 90: 899904CrossRefGoogle Scholar
Shapiro, M., Argauer, R. 2001. Relative effectiveness of selected stilbene optical brighteners as enhancers of the beet armyworm (Lepidoptera: Noctuidae) nuclear polyhedrosis virus. Journal of Economic Entomology 94: 339–43CrossRefGoogle ScholarPubMed
Shapiro, M., Dougherty, E.M. 1994. Enhancement in activity of homologous and heterologous viruses against the gypsy moth (Lepidoptera: Lymantriidae) by an optical brightener. Journal of Economic Entomology 97: 361–5CrossRefGoogle Scholar
Shapiro, M., Robertson, J.L. 1992. Enhancement of gypsy moth (Lepidoptera: Lymantriidae) baculovirus activity by optical brighteners. Journal of Economic Entomology 85: 1120–4CrossRefGoogle Scholar
Shapiro, M., Dougherty, E., Hamm, J.J. 1992. Composition and methods for biocontrol using fluorescent brighteners. US Patent Document 5,124,149Google Scholar
St. Leger, R.J., Staples, R.C., Roberts, D.W. 1993. Entomopathogenic isolates of Metarhizium anisopliae, Beauveria bassiana, and Aspergillus flavus produce multiple extracellular chitinase isoenzymes. Journal of Invertebrate Pathology 61: 81–4CrossRefGoogle Scholar
Vail, P.V., Hoffman, D.F., Tebbets, J.S. 1996. Effects of a fluorescent brightener on the activity of Anagrapha falcifera (Lepidoptera: Noctuidae) nuclear polyhedrosis virus to four noctuid pests. Biological Control 7: 121–5CrossRefGoogle Scholar
Venglarik, C.J., Singh, A.K., Bridges, R.J. 1994. Comparison of -nitro versus -amino 4,4′-substituents of disulfonic stilbenes as chloride channel blockers. Molecular and Cellular Biochemistry 140: 137–46CrossRefGoogle ScholarPubMed
Villaume, F.G. 1958. Optical bleaches in soaps and detergents. Journal of the American Oil Chemistry Society 35: 558–66CrossRefGoogle Scholar
Vogel, V.G., Costantino, J.P., Wickerham, D.L., Cronin, W.M., Wolmark, N. 2002. The study of tamoxifen and raloxifene: preliminary enrollment data from a randomized breast cancer risk reduction trial. Clinical Breast Cancer 3: 153–9CrossRefGoogle Scholar
Wang, P.., Granados, R.R. 2000. Calcofluor disrupts the midgut defense system in insects. Insect Biochemistry and Molecular Biology 30: 135–43CrossRefGoogle ScholarPubMed
Washburn, J.O., Kirkpatrick, B.A., Haas-Stapleton, E., Volkman, L.E. 1998. Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biological Control 11: 5869CrossRefGoogle Scholar
Zinser, C., Ernst, D., Sandermann, H. 1998. Induction of stilbene synthase and cinnamyl alcohol dehydrogenase mRNAs in Scots pine (Pinus sylvestris L.) seedlings. Planta, 204: 169176CrossRefGoogle Scholar
Zou, Y., Young, S.Y. 1994. Enhancement of nuclear polyhedrosis activity in larval pests of lepidoptera by a stilbene fluorescent brightener. Journal of Entomological Science 29: 130–3CrossRefGoogle Scholar
Zou, Y., Young, S.Y. 1996. Use of a fluorescent brightener to improve Pseudoplusia includens (Lepidoptera: Noctuidae) nuclear polyhedrosis virus activity in the laboratory and field. Journal of Economic Entomology 89: 92–6CrossRefGoogle Scholar