Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T04:49:46.528Z Has data issue: false hasContentIssue false

Spatial heterogeneity of low-density populations of Melanoplus sanguinipes (Orthoptera: Acrididae) associated with grazing and vegetation treatments

Published online by Cambridge University Press:  31 May 2012

Dennis J. Fielding*
Affiliation:
USDA-ARS, PO Box 757200, University of Alaska, Fairbanks, Alaska, United States 99775
M.A. Brusven
Affiliation:
College of Agriculture, University of Idaho, Moscow, Idaho, United States 83844-2339
Bahman Shafii
Affiliation:
College of Agriculture, University of Idaho, Moscow, Idaho, United States 83844-2339
William J. Price
Affiliation:
College of Agriculture, University of Idaho, Moscow, Idaho, United States 83844-2339
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The objectives of this study were to determine whether the spatial distribution of Melanoplus sanguinipes F., the most abundant species of grasshopper on rangeland in southern Idaho, varied annually in response to changing patterns of grazing and to investigate how vegetation affects the spatial distribution of low-density populations of M. sanguinipes at scales relevant to most rangeland-management activities. A lattice of 72 sites was established across nine pastures, covering approximately 5000 ha. At each site, densities of M. sanguinipes, percent canopy coverage by plant species, and percent forage utilization by livestock were estimated twice per year, in June when M. sanguinipes was in the nymphal stage and in August during the adult stage, for 4 years, 1991–1994. Spatial analyses of variance were used to evaluate the influence of grazing and vegetation type on densities of M. sanguinipes. In August of each year, densities of M. sanguinipes were lower on heavily grazed sites than on lightly grazed sites, except in 1993, when the opposite trend was observed. Above-normal precipitation in 1993 resulted in abundant growth of annual forbs and regrowth of grazed plants. The distribution of nymphs in June of 1993 and 1994 reflected the grazing patterns of the previous summer. Densities of M. sanguinipes were lower on crested wheatgrass habitats than on annual grasslands for every sampling period from June 1991 to June 1993, after which no differences were observed. We interpret the results to suggest that grazing effects on low-density populations of M. sanguinipes were contingent on weather conditions; under dry conditions, grazed habitats were less favorable to M. sanguinipes but, during relatively cool wet summers, grazing created conditions that were more favorable to M. sanguinipes.

Résumé

Nous avons tenté de déterminer si la répartition spatiale de Melanoplus sanguinipes F., l’espèce de criquet la plus abondante dans la zone de pâturage du sud de l’Idaho, varie annuellement en fonction des fluctuations du broutage et comment la végétation affecte la répartition spatiale des populations de criquets de faible densité à des échelles importantes pour la plupart des opérations d’aménagement des pâturages. Une grille de 72 sites a été créée dans neuf pâturages couvrant environ 5000 ha. À chaque site, nous avons estimé la densité des criquets, le pourcentage de terrain couvert par les diverses espèces de plantes et le pourcentage de brout utilisé par le bétail, deux fois par année durant 4 ans, de 1991 à 1994, en juin, durant la nymphose de M. sanguinipes, et en août, au stade adulte du criquet. Des analyses de variance spatiales ont servi à évaluer l’influence du broutage et du type de végétation sur la densité des criquets. Chaque année en août, la densité des criquets s’est avérée moins forte aux sites très broutés qu’aux sites peu broutés, sauf en 1993 alors que la tendance inverse s’est produite. Les précipitations au-dessus de la moyenne en 1993 ont donné lieu à une production abondante des herbes autres que les graminées et à une repoussée des plantes broutées. La répartition des nymphes en juin de 1993 et 1994 reflétait les patterns de broutage de l’été précédent. La densité des M. sanguinipes a été plus faible dans les habitats de crêtes à agropyrons que dans les prairies annuelles à chaque période d’échantillonnage de juin 1991 à juin 1993, après quoi nous n’avons plus observé de différences. Ces résultats semblent indiquer que les effets du broutage sur les populations de M. sanguinipes de faible densité sont fonction des conditions climatiques; par temps sec, les habitats broutés sont moins favorables à M. sanguinipes, alors que durant les étés relativement frais et humides, le broutage crée des conditions qui lui sont plus favorables.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blaisdell, J.P. 1958. Seasonal development and yield of native plants on the Upper Snake River Plains and their relation to certain climatic factors. United States Department of Agriculture Technical Bulletin 1190Google Scholar
Campbell, J.B., Arnett, W.H., Lambley, J.D., Jantz, O.K., Knutson, H. 1974. Grasshoppers (Acrididae) of the Flint Hills native tall grass prairie in Kansas. Kansas State University Agricultural Experiment Station Research Paper 19Google Scholar
Cigliano, M.M., Kemp, W.P., Kalaris, T. 1995. Spatiotemporal characteristics of rangeland grasshopper (Orthoptera: Acrididae) regional outbreaks in Montana. Journal of Orthoptera Research 4: 111–26CrossRefGoogle Scholar
Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science (Washington, DC) 199: 1302–10CrossRefGoogle ScholarPubMed
Coppock, D.L., Detling, J.K., Ellis, J.E., Dyer, M.I. 1983. Plant-herbivore interactions in a North American mixed-grass prairie. II. Responses of bison to modification of vegetation by prairie dogs. Oecologia 56: 10–5CrossRefGoogle Scholar
Cressie, N.A.C. 1991. Statistics for spatial data. New York: John Wiley & Sons, IncGoogle Scholar
Daubenmire, R. 1959. A canopy cover method of vegetational analysis. Northwest Science 33: 4364Google Scholar
Denno, R.E., Roderick, G.K., Huberty, M.A., Dobel, H.G., Eubanks, M.D., Losey, J.E., Langellotto, G.A. 1996. Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecological Monographs 66: 389406CrossRefGoogle Scholar
Detling, J.K. 1987. Grass response to herbivory. pp 5668in Capinera, J.L. (Ed), Integrated pest management on rangeland: a shortgrass prairie perspective. Boulder and London: Westview Press, IncGoogle Scholar
Dingle, H. (Editor). 1977. Evolution of insect migration and diapause. New York: Springer-VerlagGoogle Scholar
Evans, E.W. 1988. Grasshopper (Insecta: Orthoptera: Acrididae) assemblages of tallgrass prairie: influence of fire frequency, topography, and vegetation. Canadian Journal of Zoology 66: 1495–501CrossRefGoogle Scholar
Fielding, D.J., Brusven, M.A. 1990. Historical analysis of grasshopper (Orthoptera: Acrididae) population responses to climate in southern Idaho, 1950–1980. Environmental Entomology 19: 1786–91CrossRefGoogle Scholar
Fielding, D.J., Brusven, M.A. 1992. Food and habitat preferences of Melanoplus sanguinipes and Aulocara elliotti (Orthoptera: Acrididae) on southern Idaho rangeland. Journal of Economic Entomology 85: 783–8Google Scholar
Fielding, D.J., Brusven, M.A. 1993 a. Spatial analysis of grasshopper density and ecological disturbance on southern Idaho rangeland. Agriculture Ecosystems and Environment 43: 3147CrossRefGoogle Scholar
Fielding, D.J., Brusven, M.A. 1993 b. Grasshopper (Orthoptera: Acrididae) community composition and ecological disturbance on southern Idaho rangeland. Environmental Entomology 22: 7181CrossRefGoogle Scholar
Fielding, D.J., Brusven, M.A. 1995. Grasshopper densities on grazed and ungrazed rangeland under drought conditions in southern Idaho. Great Basin Naturalist 55: 352–8Google Scholar
Fielding, D.J., Brusven, M.A. 1996. Grazing and grasshoppers: an interregional perspective. Research Bulletin of the University of Idaho Agricultural Experiment Station 785Google Scholar
Haferkamp, M.R., Volesky, J.D., Borman, M.M., Heitschmidt, R.K., Currie, P.O. 1993. Effects of mechanical treatments and climatic factors on Northern Great Plains rangelands. Journal of Range Management 46: 346–50CrossRefGoogle Scholar
Hamazaki, T. 1996. Effects of patch shape on the number of organisms. Landscape Ecology 11: 299306CrossRefGoogle Scholar
Hanski, I. 1981. Coexistence of competitors on patchy environments with and without predation. Oikos 37: 306–12CrossRefGoogle Scholar
Hanski, I. 1995. Population aggregation facilitates coexistance of many competing carrion fly species. Oikos 72: 223–7Google Scholar
Holyoak, M., Lawler, S.P. 1996. Persistence of an extinction-prone predator–prey interaction through metapopulation dynamics. Ecology 77: 1867–79CrossRefGoogle Scholar
Hutchinson, G.E. 1961. The paradox of the plankton. American Naturalist 95: 137–45CrossRefGoogle Scholar
Joern, A. 1982. Distribution, densities, and relative abundances of grasshoppers (Orthoptera: Acrididae) in a Nebraska sandhills prairie. Prairie Naturalist 14: 3745Google Scholar
Joern, A., Behmer, S.T. 1998. Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecological Entomology 23: 174–84CrossRefGoogle Scholar
Johnson, D.L. 1989. Spatial analysis of the relationship of grasshopper outbreaks to soil classification. pp 347–59 in Estimation and analysis of insect populations. Lecture Notes in Statistics 55. New York: Springer-VerlagGoogle Scholar
Journal, A.G., Huigbregts, C.J. 1978. Mining geostatistics. London: Academic PressGoogle Scholar
Kareiva, P. 1987. Habitat fragmentation and the stability of predator–prey interactions. Nature (London) 326: 388–90CrossRefGoogle Scholar
Kemp, W.P. 1992. Temporal variation in rangeland grasshopper (Orthoptera: Acrididae) communities in the steppe region of Montana, U.S.A. The Canadian Entomologist 124: 437–50CrossRefGoogle Scholar
Kemp, W.P., Cigliano, M.M. 1994. Drought and rangeland grasshopper species diversity. The Canadian Entomologist 126: 1075–92CrossRefGoogle Scholar
Kemp, W.P., Kalaris, T.M., Quimby, W.F. 1989. Rangeland grasshopper (Orthoptera: Acrididae) spatial variability: macroscale population assessment. Journal of Economic Entomology 82: 1270–6CrossRefGoogle Scholar
Kemp, W.P., Harvey, S.J., O'Neill, K.M. 1990. Patterns of vegetation and grasshopper community composition. Oecologia 83: 299303CrossRefGoogle ScholarPubMed
Krishna, S.S., Thorsteinson, A.J. 1972. Ovarian development of Melanoplus sanguinipes (Fab.) (Acrididae: Orthoptera) in relation to utilization of water-soluble food proteins. Canadian Journal of Zoology 50: 1319–24CrossRefGoogle Scholar
Legendre, P., Fortin, M. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–38CrossRefGoogle Scholar
Liebhold, A.M., Rossi, R.E., Kemp, W.P. 1993. Geostatistics and geographic information systems in applied insect ecology. Annual Review of Entomology 38: 303–27CrossRefGoogle Scholar
May, R.M. 1981. Stability and complexity in model ecosystems. Princeton, New Jersey: Princeton University PressGoogle Scholar
McAnelly, M.L., Rankin, M.A. 1986. Migration in the grasshopper Melanoplus sanguinipes (Fab.). I. The capacity for flight in non-swarming populations. Biological Bulletin (Woods Hole) 170: 368–77CrossRefGoogle Scholar
McGradysteed, J., Morin, P.J. 1996. Disturbance and the species composition of rain pool microbial communities. Oikos 76: 93102CrossRefGoogle Scholar
Murray, R.B., Mayland, H.F., Van Soest, P.J. 1978. Growth and nutritional value to cattle of grasses on cheatgrass range in southern Idaho. United States Forest Service Research Paper INT–99Google Scholar
Onsager, J.A. 2000. Suppression of grasshoppers in the Great Plains through grazing management. Journal of Range Management 53: 592602CrossRefGoogle Scholar
Pickford, R. 1963. Wheat crops and native prairie in relation to the nutritional ecology of Camnula pellucida (Scudder) (Orthoptera: Acrididae) in Saskatchewan. The Canadian Entomologist 95: 764–70CrossRefGoogle Scholar
Pierson, F.B., Wight, J.R. 1991. Variability of near-surface soil temperature on sagebrush rangeland. Journal of Range Management 44: 491–7CrossRefGoogle Scholar
Pulliam, H.R., Danielson, B.J. 1991. Sources, sinks, and habitat selection: a landscape perspective on population dynamics. American Naturalist 137: 5066CrossRefGoogle Scholar
Quinn, M.A., Walgenbach, D.D. 1990. Influence of grazing history on the community structure of grasshoppers of mixed-grass prairie. Environmental Entomology 19: 1756–66CrossRefGoogle Scholar
Richards, J.H., Caldwell, M.M. 1985. Soluble carbohydrates, concurrent photosynthesis and efficiency in regrowth following defoliation: a field study with Agropyron species. Journal of Applied Ecology 22: 907–20CrossRefGoogle Scholar
SAS Institute Inc. 1990. SAS/IML user's guide, version 6. 1st edition. Cary, North Carolina: SAS Institute IncGoogle Scholar
SAS Institute Inc. 1991. SAS/STAT user's guide, version 6. 1st edition. Volume 2. Cary, North Carolina: SAS Institute IncGoogle Scholar
Schneider, D.W., Frost, T.M. 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 6486CrossRefGoogle Scholar
Scoggen, A.C., Brusven, M.A. 1973. Grasshopper–plant community associations in Idaho in relation to the natural and altered environment. Melanderia 12: 2233Google Scholar
Searle, S.K. 1971. Linear models. New York: John Wiley & Sons, IncGoogle Scholar
Shafii, B., Price, W.J., Fielding, D.J., Brusven, M.A. 1995. Spatial analysis of grasshopper density as influenced by anthropogenic habitat changes. pp 138–55 in Proceedings of the 1995 Kansas State University Conference on Applied Statistics in Agriculture, 23–25 April 1995, Manhattan, Kansas. Manhattan: Kansas State UniversityGoogle Scholar
Southwood, T.R.E. 1988. Tactics, strategies, and templets. Oikos 52: 318CrossRefGoogle Scholar
Thompson, D.C. 1987. Sampling rangeland grasshoppers. pp 219–33 in Capinera, J.L. (Ed), Integrated pest management on rangeland: a shortgrass perspective. Boulder, Colorado: WestviewGoogle Scholar
Tisdale, E.W., Hironaka, M. 1981. The sagebrush-grass region: a review of the ecological literature. University of Idaho Forest, Wildlife and Range Experiment Station Bulletin 33 [Moscow: University of Idaho]Google Scholar
Turner, M.G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171–97CrossRefGoogle Scholar
United States Department of Agriculture, Soil Conservation Service. 1976. National Range Handbook. Washington, DC: United States Department of Agriculture, Soil Conservation ServiceGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. 2nd edition. Englewood Cliffs, New Jersey: Prentice Hall IncGoogle Scholar