Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:31:08.976Z Has data issue: false hasContentIssue false

Soil moisture and relative humidity effects during postdiapause on the emergence of western cherry fruit fly (Diptera: Tephritidae)

Published online by Cambridge University Press:  04 February 2013

Wee L. Yee*
Affiliation:
United States Department of Agriculture, Agricultural Research Service, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, Washington 98951, United States of America
*

Abstract

Pupae of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), from Kennewick and Roslyn in Washington State, United States of America, were subjected to different soil and air moisture conditions to test the hypotheses that adult emergence from dry and moist soil is similar and is greater and occurs earlier at high than low relative humidities (RHs). Adult fly emergence from 0–57% saturated loam soil did not differ in Kennewick (64.8–75.1%) and Roslyn (81.7–86.6%) populations. Emergence did not occur from 76% saturated loam soil. In a RH experiment using dry soil, emergence of Kennewick flies was highest at 97% RH (76.8%), intermediate at 12–74% RH (66.4–69.6%), and lowest at 3% RH (58.0%). Emergence of Roslyn flies was higher at 97% RH (85.6%) than 3% (69.2%) and 12% RH (74.3%), but it did not differ from that at 33% (76.9%) and 74% RH (79.4%). Flies emerged ∼2–3 days earlier at 97% RH than at 3–12% RH. An unnaturally low RH of 3% caused more flies to be deformed than higher RHs. High emergence of R. indifferens in dry and moist conditions likely contributes to its presence in a wide range of native and nonnative habitats.

Résumé

Des nymphes de la mouche occidentale des cerises, Rhagoletis indifferens Curran (Diptera: Tephritidae), de Kennewick et Roslyn dans l’état de Washington, États-Unis d'Amérique, ont été exposées à des conditions différentes d'humidité du sol et de l'air afin de vérifier les hypothèses voulant que l’émergence des adultes soit la même dans les sols secs et humides et que l’émergence soit plus forte et se produise plus tôt aux humidités relatives élevées qu'aux humidités relatives basses. L’émergence de mouches adultes n'est pas différente dans les sols loameux saturés à 0–57% dans les populations de Kennewick (64,8–75,1%) et Roslyn (81,7–86,6%). Il ne se produit pas d’émergence dans les sols loameux saturés à 76%. Dans une expérience sur l'humidité relative (RH/HR) utilisant du sol sec, l’émergence des mouches de Kennewick est maximale à 97% HR (76,8%), moyenne à 12–74% HR (66,4–69,6%) et minimale à 3% HR (58,0%). L’émergence des mouches de Roslyn est plus forte à 97% HR (85,6%) qu’à 3% HR (69,2%) et 12% HR (74,3%), mais ne diffère pas de l’émergence à 33% HR (76,9%) et à 74% HR (79,4%). Les mouches émergent ∼2–3 jours plus tôt à 97% HR qu’à 3–12% HR. Une HR anormalement basse de 3% produit plus de mouches déformées que les HR plus élevées. Les fortes émergences de R. indifferens dans les conditions d'humidité et de sécheresse contribuent vraisemblablement à sa présence dans une gamme étendue d'habitats indigènes et nonindigènes.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AliNiazee, M.T. 1974. The western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae) 1. Distribution of the diapausing pupae in the soil. The Canadian Entomologist, 106: 909912.CrossRefGoogle Scholar
Ashley, T.R., Greany, P.D., Chambers, D.L. 1976. Adult emergence in Biosteres (Opius) longicaudatus and Anastrepha suspensa in relation to the temperature and moisture concentration of the pupation medium. The Florida Entomologist, 59: 391396.CrossRefGoogle Scholar
Beck, D.E. 1932. Life history notes and a study of the effects of humidity on adult emergence of Rhagoletis suavis Cress., from pupae at a constant temperature (Diptera, Trypetidae). Journal of the New York Entomological Society, 40: 497501.Google Scholar
Bressan-Nascimento, S. 2001. Emergence and pupal mortality factors of Anastrepha obliqua (Macq.) (Diptera: Tephritidae) along the fruiting season of the host Spondias dulcis L. Neotropical Entomology, 30: 207215.CrossRefGoogle Scholar
Brown, R.D.AliNiazee, M.T. 1977. Synchronization of adult emergence of the western cherry fruit fly in the laboratory. Annals of the Entomological Society of America, 70: 678680.CrossRefGoogle Scholar
Bush, G.L. 1966. The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera, Tephritidae). Bulletin of the Museum of Comparative Zoology, 135: 431562.Google Scholar
Carotenuto, A.Dell'Isola, M. 1996. An experimental verification of saturated salt solution-based humidity fixed points. International Journal of Thermophysics, 17: 14231439.CrossRefGoogle Scholar
Curran, C.H. 1932. New North American Diptera, with notes on others. American Museum Novitates, 526: 113.Google Scholar
Desert Research Institute. 2012. Western regional climate center [online]. Available from http://www.wrcc.dri.edu/CLIMATEDATA.html [accessed 12 April 2012].Google Scholar
Eide, P.M., Lynd, F.J., Telford, H.S. 1949. The cherry fruitfly in eastern Washington. Washington State Agricultural Station Circular, 72: 18.Google Scholar
Erlbeck, R., Haseder, I.E., Stinglwagner, G.K.F. 1998. Das kosmos wald- und forstlexikon. Franckh-kosmos verlags-GmbH & Co., Stuttgart, Germany.Google Scholar
Fitt, G.P. 1981. Pupal survival of two northern Australian tephritid species and its relationship to soil conditions. Journal of the Australian Entomological Society, 20: 139144.CrossRefGoogle Scholar
Frick, K.E., Simkover, H.G., Telford, H.S. 1954. Bionomics of the cherry fruit flies in eastern Washington. Washington Agricultural Experiment Stations Technical Bulletin, 13: 166.Google Scholar
Gibbs, A.G., Chippindale, A.K., Rose, M.R. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology, 200: 18211832.CrossRefGoogle ScholarPubMed
Greenspan, L. 1977. Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, 81A: 8996.CrossRefGoogle Scholar
Gross, H.R. 1988. Effect of temperature, relative humidity, and free water on the number and normalcy of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) emerging from eggs of Heliothis zea (Boddie) (Lepidoptera: Noctuidae). Environmental Entomology, 17: 470475.CrossRefGoogle Scholar
Hulthen, A.Clarke, A.R. 2006. The influence of soil type and moisture on pupal survival of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Australian Journal of Entomology, 45: 1619.CrossRefGoogle Scholar
Li, X.Z., Liu, Y.H., Wang, J.J., Li, S.B. 2009. Growth, development, and water-loss dynamics in Bactrocera tau (Walker) (Diptera: Tephritidae) pupae exposed to determined humidity. The Pan-Pacific Entomologist, 85: 150158.CrossRefGoogle Scholar
Lyons, C.P.Merilees, B. 1995. Trees, shrubs, and flowers to know in Washington and British Columbia. Lone Pine Publishing, Redmond, Washington, United States of America.Google Scholar
McClintock, T.C. 1967. Henderson Luelling, Seth Lewelling, and the birth of the Pacific Coast fruit industry. Oregon Historical Quarterly, 68: 153174.Google Scholar
Montoya, P., Flores, S., Toledo, J. 2008. Effect of rainfall and soil moisture on survival of adults and immature stages of Anastrepha ludens and A. obliqua (Diptera: Tephritidae) under semi-field conditions. Florida Entomologist, 91: 643650.Google Scholar
Naeth, M.A., Bailey, A.W., Chanasyk, D.S., Pluth, D.J. 1991. Water holding capacity of litter and soil organic matter in mixed prairie and fescue grassland ecosystems of Alberta. Journal of Rangeland Management, 44: 1317.CrossRefGoogle Scholar
Neilson, W.T.A. 1964. Some effects of relative humidity on development of pupae of the apple maggot, Rhagoletis pomonella (Walsh). The Canadian Entomologist, 96: 810811.CrossRefGoogle Scholar
Perez-Mendoza, J.Weaver, D.K. 2006. Temperature and relative humidity effects on postdiapause larval development and adult emergence in three populations of wheat stem sawfly (Hymenoptera: Cephidae). Environmental Entomology, 35: 12221231.CrossRefGoogle Scholar
Perneger, T.V. 1998. What's wrong with Bonferroni adjustments. British Medical Journal, 316: 12361238.CrossRefGoogle ScholarPubMed
Pezzullo, J.C. 2012. Interactive statistical page [online]. Available from http://statpages.org/##CrossTabs [accessed 1 August 2012].Google Scholar
Rivard, I. 1968. Synopsis et bibliographie annotée sur la mouche de la pomme, Rhagoletis pomonella (Walsh). Mémoires de la Société Entomologique du Québec, 2: 1158.Google Scholar
SAS Institute Inc. 2008. SAS/STAT® user's guide, version 9.2. Cary, North Carolina, United States of America.Google Scholar
Smith, S.L.Jones, V.P. 1991. Alteration of apple maggot (Diptera: Tephritidae) emergence by cold period duration and rain. Environmental Entomology, 20: 4447.CrossRefGoogle Scholar
Tracewski, K.T.Brunner, J.F. 1987. Seasonal and diurnal activity of Rhagoletis zephyria Snow. Melanderia, 45: 2732.Google Scholar
Trottier, R.Townshend, J.L. 1979. Influence of soil moisture on apple maggot emergence, Rhagoletis pomonella (Diptera: Tephritidae). The Canadian Entomologist, 111: 975976.CrossRefGoogle Scholar
Williams, A.E., Rose, M.R., Bradley, T.J. 1998. Using laboratory selection for desiccation resistance to examine the relationship between respiratory pattern and water loss in insects. The Journal of Experimental Biology, 201: 29452952.CrossRefGoogle ScholarPubMed
Yee, W.L. 2008. Host plant use by apple maggot, western cherry fruit fly, and other Rhagoletis species (Diptera: Tephritidae) in central Washington State. The Pan-Pacific Entomologist, 84: 163178.CrossRefGoogle Scholar
Yee, W.L.Goughnour, R.B. 2008. Host plant use by and new host records of apple maggot, western cherry fruit fly, and other Rhagoletis species (Diptera: Tephritidae) in western Washington State. The Pan-Pacific Entomologist, 84: 179193.CrossRefGoogle Scholar
Zar, J.H. 1999. Biostatistical analysis, 4th edition. Prentice Hall, Upper Saddle River, New Jersey, United States of America.Google Scholar