Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T07:24:49.878Z Has data issue: false hasContentIssue false

SEX-SPECIFIC EMERGENCE OF IPS TYPOGRAPHUS L. (COLEOPTERA: SCOLYTIDAE) AND FLIGHT BEHAVIOR IN RESPONSE TO PHEROMONE SOURCES FOLLOWING HIBERNATION

Published online by Cambridge University Press:  31 May 2012

Åke Lindelöw
Affiliation:
Swedish University of Agricultural Sciences, Department of Plant and Forest Protection, Division of Forest Entomology, Box 7044, 750 07 Uppsala, Sweden
Jan Weslien
Affiliation:
Swedish University of Agricultural Sciences, Department of Plant and Forest Protection, Division of Forest Entomology, Box 7044, 750 07 Uppsala, Sweden

Abstract

Emergence patterns, sex ratios, and dispersal characteristics of Ips typographus L. (Coleoptera: Scolytidae) emerging from hibernation sites were studied under field conditions. A total of 8666 emerging beetles were caught in 14 tent-traps, covering brood tree stumps at 3 different hibernation sites. Samples of these beetles were sexed at frequent intervals. The proportion of females increased as emergence progressed and the overall proportion of females was 62%. A total of 3433 beetles emerging after hibernation were marked and released on 19 separate occasions. The recapture rates were 13 and 4% in nearby and distant pheromone traps, respectively. Recaptures were recorded at distances of up to 1800 m. Beetles were able to respond and fly to pheromone sources shortly after emergence without prior feeding or prolonged flight activity. Trapping and marking techniques, temporal and spatial emergence patterns, seasonal sex ratio changes, and factors influencing pheromone trap catches are discussed.

Résumé

On a étudié les profils d’émergence, les ratios de femelles et les caractéristiques de la dispersion de l’Ips typographus L. (Coleoptera : Scolytidae) sortant de ses quartiers d’hivernement sur le terrain. On a capturé 8666 scolytes dans 14 pièges-tentes disposés sur des souches d’arbres colonisées, et ce à 3 sites d’hivernement. On a sexé des échantillons de scolytes à intervalles fréquents. La proportion de femelles a augmenté à mesure qu’avançait l’émergence, leur proportion globale ayant été de 62%. On a marqué et relâche 3433 scolytes ayant émergé après l’hivernement, lors de 19 sorties différentes. Les taux de recapture ont été de 13 et de 4%, avec des pièges à phéromone disposés à proximité et à distance, respectivement. On a effectué des recaptures jusqu’à 1800 m du point de relâche. Les scolytes se sont montrés attirés et capables de voler vers les sources de phéromone peu après l’émergence, sans avoir mangé ou volé de façon prolongée. La discussion porte sur le piégeage et les techniques de marquage, les profils d’émergence dans le temps et l’espace, les variations saisonnières du ratio de femelles et les facteurs qui influencent les captures par pièges à phéromone.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annila, E. 1969. Influence of temperature upon the development of Ips typographus L. (Coleoptera, Scolytidae). Ann. Zool. Fennici 6: 161207.Google Scholar
Annila, E. 1971. Sex ratio in Ips typographus L. (Col., Scolytidae). Ann. Ent. Fenn. 37: 714.Google Scholar
Bakke, A. 1982. Mass trapping of the spruce bark beetle Ips typographus in Norway as a part of an integrated control program. pp. 1825in Kydonius, A.F., and Beroza, M. (Eds.), Insect Suppression with Controlled Release Pheromone Systems II. CRC Press, Boca Raton, Florida.Google Scholar
Bakke, A., Fröyen, P., and Skatteböl, L.. 1977. Field response to a new pheromonal compound isolated from Ips typographus. Naturwissenschaften 64: 9899.CrossRefGoogle Scholar
Bakke, A., Saether, T., and Kvamme, T.. 1983. Mass trapping of the spruce bark beetle Ips typographus. Pheromone and trap technology. Medd. Nor. Inst. Skogforsk. 38(3): 135.Google Scholar
Bennett, R.B., and Borden, J.H.. 1971. Flight arrestment of tethered Dendroctonus pseudotsugae and Trypodendron lineatum (Coleoptera: Scolytidae) in response to olfactory stimuli. Ann. ent. Soc. Am. 64: 12731286.CrossRefGoogle Scholar
Bombosch, S. 1954. Zur Epidemiologie des Buchdruckers (Ips typographus L.). pp. 239283in Wellenstein, G. (Ed.), Die grosse Borkenkäferkalamität in Südwestendeutschland 1944–1951.Google Scholar
Botterweg, P.F. 1982. Dispersal and flight behaviour of the spruce bark beetle Ips typographus in relation to sex, size and fat content. Z. ang. Ent. 94: 466489.CrossRefGoogle Scholar
Chapman, J.A. 1967. Response behaviour of scolytid beetles and odour meteorology, Can. Ent. 11: 11321137.CrossRefGoogle Scholar
Choudhury, J.H., and Kennedy, J.S.. 1980. Light versus pheromone-bearing wind in the control of flight direction by bark beetles, Scolytus multistratus. Physiol. Ent. 5: 207214.CrossRefGoogle Scholar
Cook, P.C., Wagner, T.L., Flamm, R.O., Dickens, J.C., and Coulson, R.N.. 1982. Examination of sex ratios and mating habits of Ips avulsus and I. calligraphus (Coleoptera: Scolytidae). Ann. ent. Soc. Am. 76: 5660.Google Scholar
Eidmann, H.H. 1983. Management of the spruce bark beetle Ips typographus in Scandinavia using pheromones. 10. Int. Congr. Plant Protection, Brighton 1983, 3: 10421050.Google Scholar
Gara, R.I. 1963 Studies on the flight behaviour of Ips confusus (Lec.) (Coleoptera: Scolytidae) in response to attractive material. Contrib. Boyce Thompson Inst. Pl. Res. 22: 5166.Google Scholar
Hagen, B.W., and Atkins, M.D.. 1975. Between generation variability in the fat content and behaviour of Ips paraconfusus Lanier. Z. ang. Ent. 79: 169172.CrossRefGoogle Scholar
Koizumi, C., and Yamaguchi, H.. 1967. Ecological researches on the Ezo eight-spined engraver, Ips typographus L. f. japonicus Niijima, with special reference to its reproduction, behaviour and dispersal. IV External sexual markings, the sex ratio and attack behaviour of the beetles. Bull. Government Forest Exp. Stn. 204: 130134. (In Japanese with English summary.)Google Scholar
Merker, E. 1957. Die ökologische Ursachen der Massenvermehrung des grossen Fichtenborkenkäfers in Südwestdeutschland während der Jahre 1941 bis 1951. Freiburg.Google Scholar
Merker, E., and Wild, M.. 1954. Das Reifen der Geschlechtsdrüsen beim grossen Fichtenborkenkäfer und sein Einfluss auf das Verhalten der Tiere. Beitr. Ent. 4: 451468.Google Scholar
Nilssen, A.C. 1978. Development of a bark fauna in plantations of spruce (Picea abies (L.) Karst.) in North Norway. Astarte 11: 151169.Google Scholar
Nilssen, A.C. 1984. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Ann. Ent. Fenn. 50: 3742.Google Scholar
Regnander, J., and Solbreck, C.. 1981. Effectiveness of different types of pheromone traps used against Ips typographus (L.) (Col., Scolytidae) in Sweden. Anz. Schädlingskde., Pflanzenschutz, Umweltschutz 54: 104108.CrossRefGoogle Scholar
Schlyter, F. 1985. Aggregation pheromone system in the bark beetle Ips typographus. Diss., University of Lund, Sweden.Google Scholar
Southwood, T.R.E., and Siddorn, J.W.. 1965. The temperature beneath insect emergence traps of various types. J. anim. Ecol. 34: 581585.CrossRefGoogle Scholar
Thomas, J.B. 1961. The life history of Ips pini (Say) (Coleoptera: Scolytidae). Can. Ent. 93: 384390.CrossRefGoogle Scholar
Wood, D.L., and Bushing, R.W.. 1963. The olfactory response of Ips confusus (LeConte) (Coleoptera: Scolytidae) to the secondary attraction in the laboratory. Can. Ent. 95: 10661078.Google Scholar