Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T12:54:42.335Z Has data issue: false hasContentIssue false

SEX PHEROMONE BLEND OF THE PANDORA MOTH (LEPIDOPTERA: SATURNIIDAE), AN OUTBREAK PEST IN PINE FORESTS (PINACEAE)

Published online by Cambridge University Press:  31 May 2012

J. Steven McElfresh
Affiliation:
Department of Entomology, University of California, Riverside, California, United States 92521
Xin Chen
Affiliation:
Department of Entomology, University of California, Riverside, California, United States 92521
Darrell W. Ross
Affiliation:
Department of Forest Science, Oregon State University, Corvallis Oregon, United States 97331
Jocelyn G. Millar*
Affiliation:
Department of Entomology, University of California, Riverside, California, United States 92521
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The female-produced sex pheromone blend of the pandora moth, Coloradia pandora pandora Blake, a pest responsible for periodic defoliation of pine forests in the western United States, has been identified. The pheromone consisted of a mixture of E10,Z12-hexadecadienal, E10,Z12-hexadecadienyl acetate, and E10,E12-hexadecadienyl acetate. All three components were essential for optimal attraction. E10,Z12-Hexadecadienol, tentatively identified in trace amounts in pheromone gland extracts, elicited strong responses from male antennae in coupled gas chromatography – electroantennogram analyses but had no apparent effect as a pheromone component at physiologically relevant levels. Hexadecanal, octadecanal, and hexadecyl acetate also were identified in extracts of female pheromone glands but elicited no responses from male antennae, nor did they appear to be components of the attractant blend. In field trials, each trap baited with the optimized three-component blend of E10,Z12-hexadecadienal, E10,Z12-hexadecadienyl acetate, and E10,E12-hexadecadienyl acetate captured an average of more than 40 male moths per night.

Résumé

La phéromone sexuelle complexe émise par les femelles du saturne Coloradia pandora pandora Blake, un parasite responsable de la défoliation périodique des forêts de pins dans l’ouest américain, a été identifié. La phéromone est un mélange d’E10,Z12-hexadécadiénal, d’acétate d’E10,Z12-hexadécadiényle et d’acétate d’E10,E12-hexadécadiényle. Les trois composantes sont essentielles pour que le pouvoir d’attraction soit optimal. L’E10,E12-hexadécadiénol, présent à l’état de traces et identifié sous toutes réserves dans les extraits de glandes à phéromone, provoque des réactions importantes des antennes chez les mâles, telles que perçues lors d’analyses couplées de chromatographie en phase gazeuse et d’électroantennogramme, mais ne semble pas avoir d’effet apparent comme composante de la phéromone à des niveaux physiologiquement décelables. L’hexadécanal, l’octodécanal, et l’acétate d’hexadécyl sont également identifiés comme extraits des glandes à phéromones des femelles, mais ne provoquent aucune réaction antennaire chez les mâles et ne semblent pas entrer dans la composition du mélange attirant. Sur le terrain, chaque piège garni d’un mélange optimisé des trois composantes, E10,Z12-hexadécadiénal, acétate d’E10,Z12-hexadécadiényl, et acétate d’E10,E12-hexadécadiényle, a attiré en moyenne plus de 40 mâles par nuit.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arn, H., Tóth, M., Priesner, E. 1999. The pherolist. Internet edition. http://www.nysaes.comell.edu/pheronet/Google Scholar
Bennett, D.D., Schmid, J.M., Mata, S.A., Edminster, S.B. 1987. Growth impact of the North Kaibab pandora moth outbreak. U.S. Department of Agriculture Forest Service Research Note RM–474Google Scholar
Bestmann, H.J., Süss, J., Vostrowsky, O. 1981. Synthese konjugiert-ungesättigter Lepidopterenpheromone und Analoga. Liebigs Annalen der Chemie: 2117–38Google Scholar
Brown, L.N. 1984. Population outbreak of Pandora Moths (Coloradia pandora Blake) on the Kaibab Plateau, Arizona (Saturniidae). Journal of the Lepidopterists Society 38: 65Google Scholar
Carolin, V.M. Jr. 1971. Extended diapause in Coloradia pandora. Pan-Pacific Entomologist 47: 1923Google Scholar
Carolin, V.M. Jr, Knopf, J.A.E. 1968. The pandora moth. U.S. Department of Agriculture Forest Service Forest Pest Leaflet 114Google Scholar
Chen, X., Millar, J.G. 2000. Preparative scale synthesis of isomerically pure (10E,12E,14Z)- and (10E,12E,14E)-hexadeca-10,12,14-trienals, sex pheromone components of Manduca sexta. Synthesis: 113–8Google ScholarPubMed
Cochran, P.H. 1998. Reduction in growth of pole-sized ponderosa pine related to a pandora moth outbreak in central Oregon. U.S. Department of Agriculture Forest Service Research Note PNW–RN–526Google Scholar
Gerson, E.A., Kelsey, R.G., Ross, D.W. 1999. Pupal diapause of Coloradia pandora Blake (Lepidoptera: Satumiidae). Pan-Pacific Entomologist 75: 170–7Google Scholar
Kim, T., Mirafzal, G.A., Liu, J., Bauld, N.L. 1993. Is hole transfer involved in metalloporphyrin-catalyzed epoxidation? Journal of the American Chemical Society 115: 7653–64CrossRefGoogle Scholar
McElfresh, J.S., Millar, J.G. 1999 a. Sex pheromone of the common sheep moth, Hemileuca eglanterina, from the San Gabriel Mountains of California. Journal of Chemical Ecology 25: 687709CrossRefGoogle Scholar
McElfresh, J.S., Millar, J.G. 1999 b. Sex pheromone of Nuttall's sheep moth, Hemileuca nuttalli, from the eastern Sierra Nevada Mountains of California. Journal of Chemical Ecology 25: 711–26CrossRefGoogle Scholar
McElfresh, J.S., Millar, J.G. 1999 c. Sex attractant pheromone of the satumid moth Coloradia velda. Journal of Chemical Ecology 25: 1067–77CrossRefGoogle Scholar
McElfresh, J.S., Millar, J.G. 1999 d. Geographic variation in the sex pheromone blend of Hemileuca electra from southern California. Journal of Chemical Ecology 25: 2505–25CrossRefGoogle Scholar
Miller, K.K., Wagner, M.R. 1989. Effect of Pandora moth (Lepidoptera: Saturniidae) defoliation on growth of ponderosa pine in Arizona. Journal of Economic Entomology 82: 1682–6CrossRefGoogle Scholar
Miyaura, N., Suginome, H., Suzuki, A. 1983. New stereospecific syntheses of pheromone bombykol and its three geometrical isomers. Tetrahedron 39: 3271–7CrossRefGoogle Scholar
Patterson, J.E. 1929. The Pandora moth, a periodic pest of western pine forests. U.S. Department of Agriculture Technical Bulletin 137Google Scholar
Richers, K. 1985. Population outbreak of pandora moths (Coloradia pandora Blake) in the Mammoth Lakes area, California. Journal of the Lepidopterists Society 39: 338–9Google Scholar
Samain, D., Descoins, C. 1979. Étude de la stéréosélective de bombykol: Hexadécadiéne-10E,12Z-o1-1 et de ses dérivés: Bombykal et acétate de bombykol. Bulletin de la Societé Chimique de France (II): 71–6Google Scholar
Schmid, J.M., Bennett, D.D. 1988. The North Kaibab pandora moth outbreak, 1978–1984. U.S. Department of Agriculture Forest Service General Technical Report RM–153Google Scholar
Tuskes, P.M., Tuttle, J.P., Collins, M.M. 1996. The wild silk moths of North America: a natural history of the Saturniidae of the United States and Canada. Ithaca: Cornell University PressCrossRefGoogle Scholar
Wygant, N.D. 1941. An infestation of the pandora moth, Coloradia pandora Blake, in lodgepole pine in Colorado. Journal of Economic Entomology 34: 697702CrossRefGoogle Scholar
Young, D.C., Vouros, P. 1990. Gas chromatography – mass spectrometry of conjugated dienes by derivatization with 4-methyl-1,2,4-triazoline-3,5-dione. Journal of Chromatography 522: 295302CrossRefGoogle ScholarPubMed