Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T13:11:01.614Z Has data issue: false hasContentIssue false

SEMIOCHEMICALS FROM THREE SPECIES OF PITYOPHTHORUS (COLEOPTERA: SCOLYTIDAE): IDENTIFICATION AND FIELD RESPONSE

Published online by Cambridge University Press:  31 May 2012

Paul L. Dallara*
Affiliation:
Department of ESPM, Division of Insect Biology, 201 Wellman Hall, University of California, Berkeley, Califomia, Uinted States 94720
Steven J. Seybold
Affiliation:
Departments of Entomology and Forest Resources, 219 Hodson Hall, 1980 Folwell Ave., University of Minnesota, St. Paul, Minnesota, United States 55108-6125
Holger Meyer
Affiliation:
Institut für Organische Chemie, Universitat Hamburg, D-2000 Hamburg, Germany
Till Tolasch
Affiliation:
Institut für Organische Chemie, Universitat Hamburg, D-2000 Hamburg, Germany
Wittko Francke
Affiliation:
Institut für Organische Chemie, Universitat Hamburg, D-2000 Hamburg, Germany
David L. Wood
Affiliation:
Department of ESPM, Division of lnsect Biology, 201 Wellman Hall, University of Califomia, Berkeley, California, United States 94720
*
1 Author to whom all correspondence should be sent at the following address: 2331 Willet Way, Pleasanton, California, United States 94566 (E-mail: [email protected]).

Abstract

Analyses of pentane extracts of frass, whole beetles, and volatiles trapped on Porapak-Q from Pityophthorus Eichhoff spp. fed on Pinus radiata D. Don demonstrated that (E)-pityol [2-(1-hydroxy-1-methylethyl)-5-methyltetrahydrofuran] was produced by male Pityophthorus carmeli Swaine, female Pityophthorus nitidulus (Mannerheim), and female Pityophthorus setosus Blackman. (E)-(−)-Conophthorin) [(5S,7S)-(−)-7-methyl-1,6-dioxaspiro[4.5]decane] was produced by male P. carmeli and male P. nitidulus. Only the (2R,5S)-(+) stereoisomer of (E)-pityol was produced by male P. carmeli and female P. setosus. In field bioassays in central coastal California, P. setosus was attracted to (E)-(+)-pityol, whereas P. carmeli responded only to a combination of (E)-(−)-conophthorin and (E)-(+)-pityol. Male P. setosus and female P. carmeli responded to these treatments with larger numbers than opposite-sex conspecifics. (E)-(−)-Conophthorin alone did not attract species of Pityophthorus but significantly reduced catches of P. setosus to (E)-(+)-pityol. Lasconotus pertenuis Casey (Coleoptera: Colydiidae) and Ips mexicanus (Hopkins) (Coleoptera: Scolytidae) were attracted to a combination of (E)-(−)-conophthorin and (E)-(+)-pityol, and showed a trend for attraction to all (E)-(−)-conophthorin-containing treatments. (E)-(−)-Pityol was neither attractive nor interruptive for any taxon. (E)-(+)-Pityol is shown to be an aggregation pheromone component for P. carmeli and P. setosus. (E)-(−)-Conophthorin functions as a pheromone component for P. carmeli and may also function as a synomone that decreases competition of P. carmeli and P. nitidulus with P. setosus and as a kairomone for L. pertenuis. These semiochemicals have been useful in studying relationships among twig insects and the pathogen Fusarium circinatum (Nirenberg and O’Donnell), causal agent of pitch canker disease in P. radiata.

Résumé

L’analyse d’extraits au pentane de chiures, de coléoptères entiers et de substances volatiles recueillies sur du Porapak-Q d’espèces de Pityophthorus Eichhoff nourries de Pinus radiata D Don a démontré que le (E)-pityol [2-(1-hydroxy-1-méthyléthyl)-5-méthylhédrahydrofurane] est produit par les mâles de Pityophthorus carmeli Swaine, les femelles de Pityophthorus nitidulus (Mannerheim) et les femelles de Pityophthorus setosus Blackman. Le (E)-(−)-conophthorine [(5S,7S)-(−)-7-méthyl-1,6-dioxaspirol[4.5]décane] est produit par les mâles de P. carmeli et de P. nitidulus. Seul le stéréoisomère (2R,5S)-(+) du (E)-pityol est produit par les mâles de P. carmeli et les femelles de P. setosus. Au cours d’expériences sur le terrain le long du centre de la côte californienne, P. setosus était attiré par le (E)-(+)-pityol, alors que P. carmeli ne réagissait qu’à une combinaison de (E)-(−)-conophthorin et de (E)-(+)-pityol. Les mâles de P. setosus et les femelles de P. carmeli réagissaient aux traitements en plus grands nombres que les individus du sexe opposé de leur propre espèce. La (E)-(−)-conophthorine seule n’attirait pas les espèces de Pitiophthorus, mais a eu pour effet de diminuer fortement le nombre de P. setosus capturés au (E)-(+)-pityol. Lasconotus pertenuis Casey (Coleoptera : Colydiidae) et Ips mexicanus (Hopkins) (Coleoptera : Scolytidae) étaient attirés par une combinaison de (E)-(−)-conophtorine et de (E)-(+)-pityol et avaient également tendance à réagir à tous les traitements à base de (E)-(−)-conophtorine. Le (E)-(−)-pityol n’était ni attirant, ni inhibiteur, pour aucun des taxons. Le (E)-(+)-pityol est une composante de la phéromone qui attire P. carmeli et P. setosus. La (E)-(−)-conophthorine fonctionne comme composante d’une phéromone dans le cas de P. carmeli, mais joue aussi le rôle de synomone, dminuant la compétition entre P. carmeli et P. nitidulus d’une part et P. setosus d’autre part et sert également de kairomone pour L. pertenuis. Ces substances sémiochimiques se sont avérées très utiles dans l’étude des relations entre les insectes des rameaux et le pathogène Fusarium circinatum (Nirenberg et O’Donnell), responsable du chancre fusarien chez P. radiata.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birgersson, G., DeBarr, G.L., de Groot, P., Dalusky, M.J., Pierce, H.D. Jr, Borden, J.H., Meyer, H., Francke, W., Espelie, K.E., Berisford, C.W. 1995. Pheromones in white pine cone beetle, Conophthorus coniperda (Schwarz) (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 143–67CrossRefGoogle ScholarPubMed
Bowers, W.W., Borden, J.H. 1992. Attraction of Lasconotus intricatus Kraus (Coleoptera: Colydiidae) to the aggregation pheromone of the four-eyed spruce bark beetle, Polygraphus rufipennis (Kirby) (Coleoptera: Scolytidae). The Canadian Entomologist 124: 15CrossRefGoogle Scholar
Brand, J.M., Bracke, J.W., Markovetz, A.J., Wood, D.L., Browne, L.E. 1975. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature (London) 254: 136–7CrossRefGoogle ScholarPubMed
Bright, D.E. 1981. Taxonomic monograph of the genus Pityophthorus Eichhoff in North and Central America (Coleoptera: Scolytidae). Memoirs of the Entomological Society of Canada 118Google Scholar
Bright, D.E., Stark, R.W. 1973. The bark and ambrosia beetles of California (Coleoptera: Scolytidae and Platypodidae). Bulletin of the California Insect Survey 16Google Scholar
Byers, J.A., Zhang, Q., Schlyter, F., Birgersson, G. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften 85: 557–61CrossRefGoogle Scholar
Byrne, K.J., Gore, W.E., Pierce, G.T., Silverstein, R.M. 1975. Porapak-Q collection of airborne organic compounds serving as models for insect pheromones. Journal of Chemical Ecology 1: 17CrossRefGoogle Scholar
Chararas, C. 1966. Recherches sur l'attractivité chez les Scolytidae. Étude sur l'attractivité sexuelle chez Carphoborus minimos Fabr. Coleoptere Scolytidae typiquement polygame. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences Serie D Paris 262: 2492–5Google Scholar
Clark, E.W., Osgood, E.A. Jr., 1964. An emergence container for recovering southern pine beetles from infested bolts. Journal of Economic Entomology 57: 783–4CrossRefGoogle Scholar
Correll, J.C., Gordon, T.R., McCain, A.H., Fox, J.W., Koehler, C.S., Wood, D.L., Schultz, M.E. 1991. Pitch canker disease in California: pathogenicity, distribution, and canker development on Monterey pine (Pinus radiata). Plant Disease 75: 676–82CrossRefGoogle Scholar
Dallara, P.L. 1994. Interrelationships among twig beetles (Scolytidae: Pityophthorus spp.), pitch canker disease, and conifers in central coastal California. pp. 44–5 in Adams, D.H., Rios, J.E., Storer, A.J. (Eds), Proceedings of the 42nd Annual Meeting of the California Forest Pest Council. Sacramento: California Department of Forestry and Fire ProtectionGoogle Scholar
Dallara, P.L. 1997. Studies on the distribution, interspecific relationships, host range, and chemical ecology of Pityophthorus spp. (Coleoptera: Scolytidae) and selected insectan associates, and their associations with Fusarium subglutinans f.sp. pini in central coastal California. Ph.D. dissertation, University of California, BerkeleyGoogle Scholar
Dallara, P.L., Seybold, S.J., Francke, W., Wood, D.L. 1995 a. The chemical ecology of Pityophthorus Eichhoff (Coleoptera: Scolytidae) in central coastal California. pp. 68–9 in Adams, D.H., Rios, J.E., Storer, A.J. (Eds), Proceedings of the 43rd Annual Meeting of the California Forest Pest Council. Sacramento: California Department of Forestry and Fire ProtectionGoogle Scholar
Dallara, P.L., Storer, A.J., Gordon, T.R., Wood, D.L. 1995 b. Current status of pitch canker disease in California. California Department of Forestry and Fire Protection Tree Note 20 [Available via http://frap.cdf.ca.gov/pitch_canker/treenotes.html]Google Scholar
de Groot, P. 1992. Biosystematics of Conophthorus Hopkins (Coleoptera: Scolytidae) in eastern North America. Ph.D. dissertation, Simon Fraser University, Burnaby, British ColumbiaGoogle Scholar
de Groot, P., DeBarr, G.L. 2000. Response of cone and twig beetles (Coleoptera: Scolytidae) and a predator (Coleoptera: Cleridae) to pityol, conophthorin, and verbenone. The Canadian Entomologist 132: 843–51CrossRefGoogle Scholar
Dixon, W.N., Payne, T.L. 1980. Attraction of entomophagous and associate insects of the southern pine beetle to beetle- and host tree-produced volatiles. Journal of the Georgia Entomological Society 15: 378–89Google Scholar
Drew, J.K. 1963. A revision of the genus Lasconotus Erichson in California (Coleoptera: Colydiidae). M.Sc. thesis, University of California, BerkeleyGoogle Scholar
Fox, J.W., Schultz, M.E. 1991. Insects associated with pitch canker in California. p. 23in Adams, D.H., Rios, J.E. (Eds), Proceedings of the 39th Annual Meeting of the California Forest Pest Council. Sacramento: California Department of Forestry and Fire ProtectionGoogle Scholar
Fox, J.W., Schultz, M.E., Gordon, T.R., Wood, D.L. 1990 a. New associations of pitch canker caused by Fusarium subglutinans with bark, twig, and cone beetles. Phytopathology 80: 989 (abstr.)Google Scholar
Fox, J.W., Wood, D.L., Koehler, C.S. 1990 b. Distribution and abundance of engraver beetles (Scolytidae: Ips species) on Monterey pines infected with pitch canker. The Canadian Entomologist 122: 1157–66CrossRefGoogle Scholar
Fox, J.W., Wood, D.L., Koehler, C.S., O'Keefe, S.T. 1991. Engraver beetles (Scolytidae: Ips species) are capable of vectoring the pitch canker fungus, Fusarium subglutinans f.sp. pini. The Canadian Entomologist 123: 1355–67CrossRefGoogle Scholar
Francke, W. 1981. Spiroacetale als Pheromone bei Insekten. Mitteilungen der Deutschen Gesellschaft der Allgemeine Angewandte Entomologie 2: 248–51Google Scholar
Francke, W., Hindorf, G., Reith, W. 1978. Methyl-1,6-dioxaspiro[4.5]decanes as odors of Paravespula vulgaris (L.). Angewandte Chemie 90: 915CrossRefGoogle Scholar
Francke, W., Hindorf, G., Reith, W. 1979. Alkyl-1,6-dioxaspiro[4.5]decanes—a new class of pheromones. Naturwissenschaften 66: 618–9CrossRefGoogle Scholar
Francke, W., Pan, M.L., König, W.A. 1987. Identification of ‘pityol’ and ‘grandisol’ as pheromone components of the bark beetle, Pityophthorus pityographus. Naturwissenschaften 74: 343–5CrossRefGoogle Scholar
Francke, W., Bartels, J., Meyer, H., Schröder, F., Kohnle, U., Baader, E., Vité, J.P. 1995. Semiochemicals from bark beetles: new results, remarks, and reflections. Journal of Chemical Ecology 21: 1043–63CrossRefGoogle ScholarPubMed
Francke, W., Schröder, F., Philipp, P., Meyer, H., Sinnwell, V., Gries, G. 1996. Identification and synthesis of new bicyclic acetals from the mountain pine beetle, Dendroctonus ponderosae Hopkins (Col.: Scol.) Bio-organic and Medicinal Chemistry 4: 363–74CrossRefGoogle ScholarPubMed
Heemann, V., Francke, W. 1976. 1,3-Dimethyl-2,9-dioxabicyclo[3.3.1]nonane: a host specific substance in Norway spruce under attack by Trypodendron lineatum (Oliv.) Naturwissenschaften 63: 344CrossRefGoogle Scholar
Hoover, K., Wood, D.L., Fox, J.W., Bros, W.E. 1995. Quantitative and seasonal association of the pitch canker fungus, Fusarium subglutinans f.sp. pini, with Conophthorus radiatae (Coleoptera: Scolytidae) and Ernobius punctulatus (Coleoptera: Anobiidae) which infest Pinus radiata. The Canadian Entomologist 127: 7991CrossRefGoogle Scholar
Hoover, K., Wood, D.L., Storer, A.J., Fox, J.W., Bros, W.E. 1996. Transmission of the pitch canker fungus, Fusarium subglutinans f.sp. pini, to Monterey pine, Pinus radiata, by cone- and twig-infesting beetles. The Canadian Entomologist 128: 981–94CrossRefGoogle Scholar
Huber, D.P.W., Gries, R., Borden, J.H., Pierce, H.D. Jr. 1999. Two pheromones of coniferophagous bark beetles found in the bark of nonhost angiosperms. Journal of Chemical Ecology 25: 805–16CrossRefGoogle Scholar
Hunt, D.W.A., Borden, J.H., Lindgren, B.S., Gries, G. 1989. The role of autoxidation of α-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Canadian Journal of Forestry Research 19: 1275–82CrossRefGoogle Scholar
Jacobson, R., Taylor, R.J., Williams, H.P., Smith, L.R. 1982. Naturally occurring spirocyclic ketals from lactones. Journal of Organic Chemistry 47: 3140–2CrossRefGoogle Scholar
Kirkendall, L.R. 1983. The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society 77: 293352CrossRefGoogle Scholar
Kohnle, U., Densborn, S., Kölsch, P., Meyer, H., Francke, W. 1992. E-7-Methyl-1,6-dioxaspiro[4.5]decane in the chemical communication of European Scolytidae and Nitidulidae (Coleoptera). Journal of Applied Entomology 114: 187–92CrossRefGoogle Scholar
Kraus, E.J. 1912. A revision of the genus Lasconotus Er. Proceedings of the Entomological Society of Washington 14: 2544Google Scholar
Lanier, G.N., Wood, D.L. 1975. Specificity of response to pheromones in the genus Ips (Coleoptera: Scolytidae). Journal of Chemical Ecology 1: 923CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple funnel trap for scolytid beetles (Coleoptera). The Canadian Entomologist 115: 299302CrossRefGoogle Scholar
McCain, A.H., Koehler, C.S., Tjosvold, S.A. 1987. Pitch canker threatens California pines. California Agriculture 41: 22–3Google Scholar
Meyer, H. 1993. Identifizierung und Synthese flüchtiger Inhaltsstoffe holzschädigender Käfer. Ph.D. dissertation, Universität Hamburg, Hamburg, GermanyGoogle Scholar
Miller, D.R., Borden, J.H. 1990. Beta-phellandrene: kairomone for pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology 16: 2519–32CrossRefGoogle ScholarPubMed
Mori, K., Puapoomchareon, P. 1987. Conversion of the enantiomers of sulcatol (6-methyl-5-hepten-2-ol) to the enantiomers of pityol [trans-2-(1-hydroxy-1-methylethyl)-5-methyltetrahydrofuran], a male-specific attractant of the bark beetle Pityophthorus pityographus. Liebigs Annalen der Chemie 3: 271–2CrossRefGoogle Scholar
Nirenberg, H.I., O'Donnell, K. 1998. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90: 434–58CrossRefGoogle Scholar
Pierce, H.D. Jr, de Groot, P., Borden, J.H., Ramaswamy, S., Oehlschlager, A.C. 1995. Pheromones in red pine cone beetle, Conophthorus resinosae Hopkins, and its synonym, C. banksianae McPherson (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 169–85CrossRefGoogle ScholarPubMed
Raffa, K.F., Dahlsten, D.L. 1995. Differential responses among natural enemies and prey to bark beetle pheromones. Oecologia 102: 1723CrossRefGoogle ScholarPubMed
Seybold, S.J., Ohtsuka, T., Wood, D.L., Kubo, I. 1995. Enantiomeric composition of ipsdienol: a chemotaxonomic character for North American populations of Ips spp. in the pini subgeneric group (Coleoptera: Scolytidae). Journal of Chemical Ecology 21: 9951016CrossRefGoogle Scholar
Sokal, R.R., Rohlf, F.J. 1981. Biometry. 2nd ed. San Francisco: W.H. Freeman and Co.Google Scholar
Storer, A.J., Gordon, T.R., Wood, D.L., Dallara, P.L. 1995. Entomological and pathological aspects of pitch canker disease in California. pp. 573–86 in Hain, F.P., Salom, S.M., Ravlin, W.F., Payne, T.L., Raffa, K.F. (Eds), Proceedings of the International Union of Forest Research Organizations Working Party Conference, Maui, Hawaii. Vienna: IUFROGoogle Scholar
Tengö, J., Ågren, L., Baur, B., Isaksson, R., Liljefors, T., Mori, K., König, W., Francke, W. 1990. Andrena wilkella male bees discriminate between enantiomers of cephalic secretion components. Journal of Chemical Ecology 16: 429–41CrossRefGoogle ScholarPubMed
Vité, J.P. 1965. Die Wirkung pflanzen-und insekteneigener Lockstoffe auf Pityophthorus und Pityogenes. Naturwissenschaften 52: 627CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar
Wood, S.L. 1989. Nomenclatural changes and new species of Scolytidae (Coleoptera), Part IV. Great Basin Naturalist 49: 167–85Google Scholar
Wood, D.L., Browne, L.E., Bedard, W.D. Jr, Tilden, P.E., Silverstein, R.M., Rodin, J.O. 1968. Response of Ips confusus to synthetic sex pheromones in nature. Science (Washington, D C) 159: 1373–4CrossRefGoogle ScholarPubMed
Zar, J.H. 1984. Biostatistical analysis. Englewood Cliffs: Prentice-Hall, Inc.Google Scholar