Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T10:58:24.688Z Has data issue: false hasContentIssue false

SEASONAL OCCURRENCE OF LEPIDOPTEROUS PESTS OF CRUCIFEROUS CROPS IN SOUTHWESTERN QUEBEC IN RELATION TO DEGREE-DAY ACCUMULATIONS

Published online by Cambridge University Press:  31 May 2012

Claude Godin
Affiliation:
Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Guy Boivin*
Affiliation:
Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
*
2 Author to whom all correspondence should be addressed.

Abstract

Eggs, larvae, and adults of diamondback moth, Plutella xylostella (L.), and imported cabbageworm, Artogeia rapae (L.), were monitored on cabbage, broccoli, and brussels sprouts [Brassica oleracea (L.) var. capitata, italica, and gemmifera] for 2 years in southwestern Quebec. The first eggs and adults of P. xylostella were observed during the first week of June, and the use of pheromone traps combined with plant sampling permitted detection of three to four generations on each cultivar type. However, adult counts in pheromone traps were not correlated with the number of eggs and larvae on plants. The date at which each generation appeared and their duration varied little between the three Brassica cultivars. An average of 352.7 degree-days (DD) above 7.3 °C were required to complete one generation, but the considerable overlap between generations reduced the usefulness of DD accumulations to predict P. xylostella occurrence. Visual counts of adult A. rapae and plant sampling of eggs and larvae permitted detection of three generations of this species on each cultivar type. The first A. rapae eggs were found during the last week of May, at least 2 weeks before adults were observed. However, butterfly counts were generally correlated with the number of larvae on plants. The dates at which each generation of A. rapae started were similar between cultivar types, and an average of 319.7 DD above 10.0 °C was required to complete one generation.

Résumé

Le développement saisonnier des oeufs, des larves et des adultes de la fausseteigne des crucifères, Plutella xylostella (L.), et de la piéride du chou, Artogeia rapae (L.), a été étudié sur une période de deux ans dans le sud-ouest du Québec, sur des plants de chou, de brocoli et de choux de Bruxelles [Brassica oleracea (L.) var. capitata, italica, and gemmifera]. L’utilisation de pièges à phéromone et l’échantillonnage des plants ont permis de distinguer trois à quatre générations de P. xylostella sur chaque variété de crucifères, les premiers oeufs et adultes étant observés durant la première semaine de juin. Par contre, le nombre d’adultes piégés n’était généralement pas corrélé avec le nombre d’oeufs ou de larves trouvés sur les plants. Les dates du début des générations ont varié légèrement entre les trois cultivars de Brassica, alors que leur durée n’a pas varié. La durée moyenne d’une génération de P. xylostella a été établie à 352,7 degrés-jours (DJ) au-dessus de 7,3 °C, mais un important chevauchement entre les générations diminue l’utilité des prédictions basées sur l’accumulation de DJ. Un décompte visuel des adultes et l’échantillonnage des plants ont permis de détecter trois générations de A. rapae sur les trois cultivars de crucifère, les premiers oeufs étant observés durant la dernière semaine de mai, au moins deux semaines avant l’observation des premiers adultes. De façon générale, le nombre de papillons observés était corrélé avec le nombre de larves sur les plants. La date de début de chaque génération de A. rapae a été la même pour les trois crucifères, et 319,7 DJ au-dessus de 10 °C étaient requis en moyenne pour compléter une génération.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andaloro, J.T., Hoy, C.W., Rose, K.B., and Shelton, A.M.. 1983 a. Evaluation of insecticide usage in the New York processing-cabbage pest management program. Journal of Economic Entomology 76: 11211124.CrossRefGoogle Scholar
Andaloro, J.R., Hoy, C.W., Rose, K.B., Tette, J.P., and Shelton, A.M.. 1983 b. A review of cabbage pest management in New York: from the pilot project to the private sector, 1978–1982. New York's Food and Life Science Bulletin 105.Google Scholar
Baker, P.B., Shelton, A.M., and Andaloro, J.T.. 1982. Monitoring of diamondback moth (Lepidoptera: Yponomeutidae) in cabbage with pheromones. Journal of Economic Entomology 75: 10251028.CrossRefGoogle Scholar
Baskerville, G.L., and Emin, P.. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50: 514517.CrossRefGoogle Scholar
Biever, K.D., Hostetter, D.L., and Boldt, P.E.. 1972. Reliability of climate-simulation studies utilizing Pieris rapae (L.). Environmental Entomology 1: 440443.Google Scholar
Boivin, G. 1987. Seasonal occurrence and geographical distribution of the carrot rust fly (Diptera: Psilidae) in Québec. Environmental Entomology 16: 503506.CrossRefGoogle Scholar
Boivin, G., and Benoit, D.L.. 1987. Predicting onion maggot (Diptera: Anthomyiidae) flights in southwestern Québec using degree-days and common weeds. Phytoprotection 68: 6570.Google Scholar
Bracken, G.K. 1988. Seasonal occurrence and infestation potential of cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), attacking rutabaga in Manitoba as determined by captures of females in water traps. The Canadian Entomologist 120: 609614.Google Scholar
Butts, R.A., and McEwen, F.L.. 1981. Seasonal populations of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in relation to day-degree accumulation. The Canadian Entomologist 113: 127131.CrossRefGoogle Scholar
Chagnon, M.A., Payette, A., Jean, C., and Cadieux, C.. 1990. Modes alternatifs de répression des insectes dans les agro-écosystèmes québécois, tome 2: Identification des insectes ravageurs et état de l'agriculture biologique au Québec. Québec. Ministère de l'Environnement et Centre Québécois de valorisation de la biomasse.Google Scholar
Dempster, J.P. 1969. The control of Pieris rapae with DDT I. The natural mortality of the young stages of Pieris. Journal of Applied Ecology 6: 339345.Google Scholar
Dreistadt, S.H., and Dahlsten, D.L.. 1990. Relationships of temperature to elm leaf beetle (Coleoptera: Chrysomelidae) development and damage in the field. Journal of Economic Entomology 83: 837841.CrossRefGoogle Scholar
Edelson, J.V., Trumble, J., and Story, R.. 1988. Cabbage development and associated lepidopterous pest complex in the southern USA. Crop Protection 7: 396402.CrossRefGoogle Scholar
Godin, C. 1997. Seasonal occurrence and parasitism of lepidopterous pests of crucifers, and host age selection by a potential control agent: Trichogramma. M.Sc. thesis, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Quebec.Google Scholar
Harcourt, D.G. 1955. Biology of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae), in eastern Ontario I. Distribution, economic history, synonomy, and general descriptions. Quebec Society for the Protection of Plants Report 37: 155160.Google Scholar
Harcourt, D.G. 1957. Biology of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae), in eastern Ontario. II. Life history, behaviour, and host relationships. The Canadian Entomologist 89: 554564.CrossRefGoogle Scholar
Harcourt, D.G. 1960. Note on a virus disease of the cabbage looper in the Ottawa valley. Canadian Journal of Plant Science 40: 572573.CrossRefGoogle Scholar
Harcourt, D.G. 1962. Design of a sampling plan for studies on the population dynamics of the imported cabbageworm Pieris rapae (L.) (Lepidoptera: Pieridae). The Canadian Entomologist 94: 849859.CrossRefGoogle Scholar
Harcourt, D.G. 1963. Biology of cabbage caterpillars in eastern Ontario. Proceedings of the Entomological Society of Ontario 93: 6175.Google Scholar
Harcourt, D.G. 1966. Major factors in survival of the immature stages of Pieris rapae (L.). The Canadian Entomologist 98: 653662.CrossRefGoogle Scholar
Harcourt, D.G. 1986. Population dynamics of the diamondback moth in southern Ontario. pp. 315in Talekar, N.S., and Griggs, T.D. (Eds.), Proceedings of the First International Workshop on Diamondback Moth Management. Asian Vegetable Research and Development Center Publication 86–248.Google Scholar
Hoffman, C.J., Dennehy, T.J., and Nyrop, J.P.. 1992. Phenology, monitoring, and control decision components of the grape berry moth (Lepidoptera: Tortricidae) risk assessment program in New York. Journal of Economic Entomology 85: 22182227.CrossRefGoogle Scholar
Huang, X., and Renwick, J.A.A.. 1993. Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents. Entomologia Experimentalis et Applicata 68: 5969.Google Scholar
Michalowicz, W.J. 1980. An ecological investigation of Artogeia rapae (L.) (Lepidoptera: Pieridae) and its natural enemies on cabbage in southern Ontario. M.Sc. thesis, University of Guelph, Guelph, Ontario.Google Scholar
Nealis, V.G., Jones, R.E., and Wellington, W.G.. 1984. Temperature and development in host–parasite relationships. Oecologia 61: 224229.Google Scholar
Parker, F.D. 1970. Seasonal mortality and survival of Pieris rapae (Lepidoptera: Pieridae) in Missouri and the effect of introducing an egg parasite, Trichogramma evanescens. Annals of the Entomological Society of America 63: 985994.CrossRefGoogle Scholar
Pruess, K.P. 1983. Day-degree methods for pest management. Environmental Entomology 12: 613619.Google Scholar
Renwick, J.A.A., and Radke, C.. 1983. Chemical recognition of host plants for oviposition by the cabbage butterfly, Pieris rapae (Lepidoptera: Pieridae). Environmental Entomology 12: 446450.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, R.J.. 1995. Biometry. 3rd ed. W.H. Freeman, New York.Google Scholar
Sutherland, D.W.S. 1966. Biological investigations of Trichoplusia ni (Hubner) and other Lepidoptera damaging cruciferous crops on Long Island, New York. Cornell University Agricultural Experiment Station Memoir 399.Google Scholar
Talekar, N.S., and Shelton, A.M.. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology 38: 275301.Google Scholar
van Driesche, R.G. 1988. Survivorship patterns of larvae of Pieris rapae (L.) (Lepidoptera: Pieridae) in Massachusetts kale, with special reference to mortality due to Apanteles glomeratus (L.) (Hymenoptera: Braconidae). Bulletin of Entomological Research 78: 397405.CrossRefGoogle Scholar
van Driesche, R.G., Coli, W., and Schumacher, A.. 1990. Update: lessons from the Massachusetts biological control intiative. IPM Practitioner 12: 15.Google Scholar