Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T11:45:59.002Z Has data issue: false hasContentIssue false

SEASONAL DIAPAUSE DEVELOPMENT, EFFECTS OF TEMPERATURE AND PHOTOPERIOD ON POSTDIAPAUSE EGG DEVELOPMENT, AND VALIDATION OF A DEGREE-DAY MODEL PREDICTING LARVAL ECLOSION OF BLUEBERRY LEAFTIER, CROESIA CURVALANA (KEARFOTT) (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

Sridhar Polavarapu
Affiliation:
Department of Biology, University of New Brunswick, Bag Service 45111, Fredericton, New Brunswick, Canada E3B 6E1
William D. Seabrook
Affiliation:
Department of Biology, University of New Brunswick, Bag Service 45111, Fredericton, New Brunswick, Canada E3B 6E1

Abstract

Eggs of blueberry leaftier, Croesia curvalana (Kearfott), were transferred from outdoors at 15-day intervals from 15 November to 1 March and held in the laboratory at 20°C, 16L:8D. Mean hatching time continually decreased with each successive transfer date and was significantly shorter for eggs transferred on 1 March compared with any previous transfer date. Transfer date also had a significant effect on percentage hatch, which generally increased with longer exposure of eggs to outdoor conditions. Mean hatching time was longer under 10L:14D photoperiod than at 13L:11D or 16L:8D conditions at all three temperatures studied. Rate of postdiapause development was linearly related to constant temperatures in the range from 6 to 25°C, but appeared to have deviated from linearity at 30°C. The lower threshold temperature for postdiapause development of eggs was estimated to be 3.4°C. Means of 60, 77, and 97 degree-days above a lower threshold of 3.5°C were required for hatching of the 10th, median, and 90th percentile of eggs under laboratory conditions, respectively. In each of 3 years, eclosion of first-instar larvae occurred over a 10- to 17-day period in late April to mid-May. Degree-day accumulations based on litter temperatures in the field predicted the dates of 10th, 50th and 90th percentile eclosion of first-instar larvae within ±2 days of the observed dates.

Résumé

Des oeufs de la Tisseuse de l’airelle, Croesia curvalana (Kearfott) ont été transférés de conditions naturelles au laboratoire à 15 jours d’intervalle entre le 15 novembre et le 1er mars, puis gardés en laboratoire à 20°C, 16L : 8O. L’intervalle moyen avant l’éclosion a diminué progressivement à chaque transfert et a été significativement plus court dans le cas des oeufs transférés le 1er mars que pour tous les oeufs transférés à une date antérieure. La date de transfert a également eu un effet significatif sur le pourcentage d’oeufs éclos, généralement plus élevé dans le cas des oeufs exposés plus longtemps aux conditions extérieures. L’intervalle moyen avant l’éclosion a été plus long à une photo-période de 10L : 14O, qu’aux photopériodes de 13L : 11O ou 16L : 8O aux trois températures expérimentales. La vitesse du développement après la diapause était en relation linéaire avec la température constante entre 5 et 25°C, mais la relation n’était plus linéaire à 30°C. Le seuil inférieur de température pour que les oeufs se développent après la diapause a été évalué à 3,4°C. Il a fallu en moyenne 60 degrés-jours au-dessus d’un seuil inférieur de 3,5°C en laboratoire pour obtenir l’éclosion de 10% des oeufs, 77 pour obtenir l’éclosion de 50% des oeufs, et 97 avant que 90% des oeufs ne soient éclos. Au cours de chacune des 3 années qu’a duré l’étude, l’éclosion des larves de premier stade a requis de 10 à 17 jours, entre la fin d’avril et la mi-mai. La sommation des degrés-jours, mesurée à partir des températures dans la litière en nature, a permis de prédire l’éclosion des larves du 10e, 50e et 90e percentiles avec une précision de ± 2 jours des dates observées.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C.V. 1959. The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society of Horticultural Sciences 74: 430445.Google Scholar
Beck, S.D. 1980. Insect Photoperiodism, 2nd ed. Academic Press, New York, NY. 387 pp.Google Scholar
Danks, H.V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada Monograph Series 1: 439 pp. Ottawa, Canada.Google Scholar
Gray, D.R., Logan, J.A., Ravlin, F.W., and Carlson, J.A.. 1991. Toward a model of gypsymoth egg phenology: Using respiration rates of individual eggs to determine temperature-time requirements of prediapause development. Environmental Entomology 20: 16451652.CrossRefGoogle Scholar
James, B.D., and Luff, M.L.. 1982. Cold-hardiness and development of eggs of Rhopalosiphum insertum. Ecological Entomology 7: 277282.CrossRefGoogle Scholar
Levine, E. 1986. Termination of diapause and postdiapause development in eggs of the stalk borer (Lepidoptera: Noctuidae). Environmental Entomology 15: 403408.CrossRefGoogle Scholar
McNeil, J.N., and Fields, P.G.. 1985. Seasonal diapause development and diapause termination in the European skipper, Thymelicus lineola (Ochs.) Journal of Insect Physiology 31: 467470.CrossRefGoogle Scholar
Morden, R.D., and Waldbauer, G.P.. 1980. Diapause and its termination in the psychid moth, Thyridopteryx ephemeraeformis. Entomologia Experimentalis et Applicata 28: 322333.CrossRefGoogle Scholar
Nielson, W.T.A., and Crozier, L.M.. 1989. Insects. pp. 7–19 in Lowbush Blueberry Production. Agriculture Canada Publication 1477/E: 56 pp. Communications Branch, Agriculture Canada, Ottawa, Ont.Google Scholar
Polavarapu, S. 1994. A Study of Diapause and Phenology of the Blueberry Leaftier, Croesia curvalana (Kearfott) (Lepidoptera: Tortricidae): Implications for Population Management. Ph.D thesis, University of New Brunswick, Fredericton, N.B. 204 pp.Google Scholar
Ponder, B.M., and Seabrook, W.D.. 1988. Biology of the blueberry leaftier Croesia curvalana (Kearfott) (Tortricidae): A field and laboratory study. Journal of the Lepidopterists' Society 42: 120131.Google Scholar
Ponder, B.M., and Seabrook, W.D.. 1994. The effect of pruning of Vaccinium angustifolium on the Croesia curvalana larval population. Journal of Small Fruit and Viticulture 2:(2): 5764.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS User's Guide Version 5. SAS Institute Inc., Cary, NC. 951 pp.Google Scholar
Sawchyn, W.W., and Church, N.S.. 1973. The effects of temperature and photoperiod on diapause development in the eggs of four species of Lestes (Odonata: Zygoptera). Canadian Journal of Zoology 51: 12571265.CrossRefGoogle Scholar
Sawyer, A. J., Tauber, M.J., Tauber, C.A., and Ruberson, J.R.. 1993. Gypsy moth (Lepidoptera: Lymantriidae) egg development: A simulation analysis of laboratory and field data. Ecological Modelling 66: 121155.CrossRefGoogle Scholar
Tauber, M.J., and Tauber, C.A.. 1976. Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annual Review of Entomology 21: 81107.CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., and Masaki, S.. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York, NY. 411 pp.Google Scholar
Tauber, M.J., Tauber, C.A., Ruberson, J.R., Tauber, A.J., and Abrahamson, L.P.. 1990. Dormancy in Lymantria dispar (Lepidoptera: Lymantriidae): Analysis of photoperiodic and thermal responses. Annals of the Entomological Society of America 83: 494503.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall Inc., Engelwood Cliffs, NJ. 718 pp.Google Scholar