Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T05:53:57.170Z Has data issue: false hasContentIssue false

RESPONSES OF LARVAL CHORISTONEURA ROSACEANA (HARRIS) (LEPIDOPTERA: TORTRICIDAE) TO A FEEDING STIMULANT

Published online by Cambridge University Press:  31 May 2012

S.Y. Li
Affiliation:
Canadian Forest Service, Pacific Forestry Centre, 506 West Bumside Road, Victoria, British Columbia, Canada V8Z 1M5
S.M. Fitzpatrick*
Affiliation:
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 6947 No, 7 Hwy, PO Box 1000, Agassiz, British Columbia, Canada V0M 1A0
*
1Author to whom correspondence should be addressed.

Abstract

The commercial feeding stimulant Pheast® was tested in the laboratory to determine its attractive and phagostimulatory effects on larval Choristoneura rosaceana (Harris). In choice experiments, larvae were attracted initially to filter paper discs treated with Pheast, but did not remain on or near treated discs. Larvae were not attracted initially to raspberry leaf discs treated with Pheast, but were more likely to stay near treated leaf discs than water-dipped ones. Larvae were neither attracted to nor arrested on whole raspberry leaves treated with Pheast. In no-choice experiments, larvae fed Pheast-treated leaves consumed more leaf tissue than, and grew almost twice as quickly as, larvae fed leaves dipped in water. When larvae were fed leaves treated with Dipel WP (Bacillus thuringiensis var. kurstaki) plus 5% Pheast, the mortality was 93% greater than that of larvae fed leaves treated with Dipel WP alone. These results suggest that Pheast has potential to enhance efficacy of B. thuringiensis against C. rosaceana on raspberries in the field.

Résumé

Les effets attirants et phagostimulateurs du stimulant alimentaire commercial Pheast® sur les larves de Choristoneura rosaceana (Harris) ont été étudiés en laboratoire. Dans des expériences de choix, les larves ont d’abord été attirées par des rondelles de papier filtre traitées au Pheast, mais ne sont pas restées sur les rondelles, ni même dans leur voisinage. Les larves n’étaient pas attirées au départ par des rondelles de feuilles de framboisier traitées au Pheast, mais avaient plus tendance à rester dans le voisinage de ces feuilles que dans le voisinage de rondelles de feuilles trempées dans l’eau. Les larves n’étaient pas attirées par des feuilles entières de framboisier traitées au Pheast et n’avaient pas tendance à rester dans leur voisinage. Dans des expériences où il n’y avait pas de choix, les larves nourries de feuilles traitées au Pheast ont consommé plus de tissu foliaire que les larves nourries de feuilles trempées dans l’eau et ont eu une croissance presque deux fois plus rapide. Chez des larves nourries de feuilles traitées au Dipel WP (Bacillus thuringiensis var. kurstaki) additionné de 5% de Pheast, la mortalité a été de 93% plus élevée que celle de larves nourries de feuilles traitées au Dipel WP seul. Ces résultats indiquent que l’addition de Pheast a de fortes chances d’augmenter l’efficacité de B. thuringiensis dans la lutte contre C. rosaceana dans les cultures de framboisiers.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abacus Concepts. 1989. SuperANOVA. Abacus Concepts. Berkeley, CA. 316 pp.Google Scholar
Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
AgriSense. 1992. Pheast: Insect Feeding Stimulant. Technical Bulletin: 4 pp.Google Scholar
Anonymous. 1996. Berry Production Guide for Commercial Growers 1996–97. British Columbia Ministry of Agriculture, Fisheries and Food. 104 pp.Google Scholar
Bartelt, R.J., McGuire, M.R., and Black, D.A.. 1990. Feeding stimulants for the European corn borer (Lepidoptera: Pyralidae): Additives to a starch-based formulation for Bacillus thuringiensis. Environmental Entomology 19: 182189.CrossRefGoogle Scholar
Bell, M.R., and Romine, C.L.. 1980. Tobacco budworm field evaluation of microbial control in cotton using Bacillus thuringiensis and a nuclear polyhedrosis virus with a feeding adjuvant. Journal of Economic Entomology 73: 427430.CrossRefGoogle Scholar
Farrar, R.R., Barbour, J.D., and Kennedy, G.G.. 1989. Quantifying food consumption and growth in insects. Annals of the Entomological Society of America 82: 593598.CrossRefGoogle Scholar
Farrar, R.R., and Ridgway, R.L.. 1994. Comparative studies of the effects of nutrient-based phagostimulants on six lepidopterous insect pests. Journal of Economic Entomology 87: 4452.CrossRefGoogle Scholar
Gould, F., Anderson, A., Landis, D., and Van Mellaert, H.. 1991. Feeding behavior and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomologia experimentalis et applicata 58: 199210.CrossRefGoogle Scholar
Hedin, P.A., Maxwell, F.G., and Jenkins, J.N.. 1974. Insect plant attractants, feeding stimulants, repellents, deterrents and other related factors affecting insect behavior. pp. 494527in Maxwell, F.G., and Harris, F.A. (Eds.), Proceedings, Summer Institute on Biological Control of Plants and Diseases, June, 1972. Mississippi State, MS. University Press, Jackson, MS.Google Scholar
Hsiao, T.H. 1985. Feeding behavior. pp. 471512in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 9. Pergamon, Oxford.Google Scholar
Johnson, D.R. 1982. Suppression of Heliothis spp. on cotton by using Bacillus thuringiensis, Baculovirus heliothis, and two feeding adjuvants. Journal of Economic Entomology 75: 207210.CrossRefGoogle Scholar
Li, S.Y., Fitzpatrick, S.M., and Isman, M.B.. 1995. Susceptibility of different instars of the obliquebanded leafroller (Lepidoptera: Tortricidae) to Bacillus thuringiensis var. kurstaki. Journal of Economic Entomology 88: 610614.CrossRefGoogle Scholar
Luttrell, R.G., Young, S.Y., Yearian, W.C., and Horton, D.L.. 1982. Evaluation of Bacillus thuringiensis-spray adjuvant-viral insecticide combinations against Heliothis spp. (Lepidoptera: Noctuidae). Environmental Entomology 11: 783787.CrossRefGoogle Scholar
Ramachandran, R., Raffa, K.F., Miller, M.J., Ellis, D.D., and McCown, B.H.. 1993. Behavioral responses and sublethal effects of spruce budworm (Lepidoptera: Tortricidae) and fall webworm (Lepidoptera: Arctiidae) larvae to Bacillus thuringiensis CrylA(a) toxin in diet. Environmental Entomology 22: 197211.CrossRefGoogle Scholar
Richter, A.R., and Fuxa, J.R.. 1984. Preference of five species of Noctuidae for feeding-stimulant adjuvants. Journal of Georgia Entomological Society 19: 383387.Google Scholar
Salama, H.S., Foda, S., and Sharaby, A.. 1985. Role of feeding stimulants in increasing the efficacy of Bacillus thuringiensis versus Spodoptera littoralis (Lepidoptera: Noctuidae). Entomologia Generalis 10: 111119.CrossRefGoogle Scholar
Yendol, W.G., Hamlen, R.A., and Rosario, S.B.. 1975. Feeding behavior of gypsy moth larvae on Bacillus thuringiensis-treated foliage. Journal of Economic Entomology 68: 2527.CrossRefGoogle Scholar