Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T15:14:39.822Z Has data issue: false hasContentIssue false

Response of adult Colorado potato beetles (Coleoptera: Chrysomelidae) to water in the landscape

Published online by Cambridge University Press:  26 October 2016

Gilles Boiteau*
Affiliation:
Agriculture and Agri-Food Canada, Potato Research Center, 850 Lincoln Road, PO Box 20280, Fredericton, New Brunswick, E3B 4Z7, Canada
Pamela MacKinley
Affiliation:
Agriculture and Agri-Food Canada, Potato Research Center, 850 Lincoln Road, PO Box 20280, Fredericton, New Brunswick, E3B 4Z7, Canada
*
1Corresponding author (e-mail: [email protected]).

Abstract

This laboratory study confirmed that the strategy of adult terrestrial Colorado potato beetle (Leptinotarsa decemlineata (Say); Coleoptera Chrysomelidae) to survive the threat of drowning in water is based on avoidance of water crossings. It also showed that beetles at the surface of a body of water after failing to avoid it, long considered limited to passive floating and phoretic transport were in fact likely to rely on a complex fight or flee response. Beetles showed capacity to swim in a pattern similar to land foraging beetles. Beetles also tolerated submergence and walked underwater. These active behaviours should improve their probability of finding shore or refuge for longer survival. Results confirmed that Colorado potato beetles are likely to accumulate near water features in the potato agro-ecosystem landscape but suggest that successful crossings and colonisation of crops on the other side are more likely than previously expected. On a larger scale, new information provided by this study combined with our knowledge of dominant winds and currents should make it possible for future research to better predict the probability of surviving encounters with water and the orientation of invasive Colorado potato beetle colonisers dispersing at the surface of bodies of water.

Type
Behaviour & Ecology
Copyright
© Her Majesty the Queen in Right of Canada 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: John Wise

References

Acheampong, S. and Mitchell, B.K. 1997. Quiescence in the Colorado potato beetle, Leptinotarsa decemlineata . Entomologia Experimentalis et Applicata, 82: 8389.Google Scholar
Adams, B.J., Hooper-Bùi, L.M., Strecker, R.M., and O’Brien, D.M. 2011. Raft formation by the red imported fire ant, Solenopsis invicta . Journal of Insect Science, 11: 114.CrossRefGoogle ScholarPubMed
Alyokhin, A.V. and Ferro, D.N. 1999. Reproduction and dispersal of summer-generation Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology, 28: 425430.Google Scholar
Alyokhin, A., Ferro, D.N., Hoy, C.W., and Head, G. 1999. Laboratory assessment of flight activity displayed by Colorado potato beetles (Coleoptera: Chrysomelidae) fed on transgenic and Cry3a toxin-treated potato foliage. Journal of Economic Entomology, 92: 115120.Google Scholar
Bartlett, P.W. 1981. Interception and eradication of Colorado beetle in England and Wales, 1958–1977. Organisation Europeenne et Mediterranneenne pour la Protection des Plantes, 10: 481489.Google Scholar
Bengtsson, G., Nilsson, E., Rydén, T., and Wiktorsson, M. 2004. Irregular walks and loops combine in small-scale movement of a soil insect: implications for dispersal biology. Journal of Theoretical Biology, 231: 299306.Google Scholar
Boiteau, G. 2002. Flight takeoff behavior of Colorado potato beetle. The Canadian Entomologist, 134: 229240.Google Scholar
Boiteau, G., Alyokhin, A., and Ferro, D.N. 2003. The Colorado potato beetle in movement. The Canadian Entomologist, 135: 122.Google Scholar
Boiteau, G. and Heikkila, J. 2013. Successional and invasive colonization of the potato crop by the Colorado potato beetle: managing spread. In Insect pests of potato global perspectives on biology and management. Edited by P. Giordanengo, A. Alyokhin, and C. Vincent. Elsevier, San Diego, California. Pp. 339371.Google Scholar
Boiteau, G. and Le Blanc, J. 1992. Colorado potato beetle: life stages. Agriculture Canada Publication 1878/E. Available from http://www.publications.gc.ca/collections/Collection/A43-1878-1992E.pdf [accessed 11 August 2016].Google Scholar
Boiteau, G. and MacKinley, P.D. 2015. Contribution of habitat type to residency and dispersal choices by overwintered and summer adult Colorado potato beetles. Entomologia Experimentalis et Applicata, 155: 249256.CrossRefGoogle Scholar
Boiteau, G. and Misener, G.C. 1996. Response of Colorado potato beetles on potato leaves to mechanical vibrations. Canadian Agricultural Engineering, 38: 223227.Google Scholar
Brouwers, N.C. and Newton, A.C. 2010a. Movement analyses of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae). Bulletin of Entomological Research, 100: 623634.Google Scholar
Brouwers, N.C. and Newton, A.C. 2010b. The influence of barriers and orientation on the dispersal ability of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae). Journal of Insect Conservation, 14: 313317.CrossRefGoogle Scholar
Coulson, S.J., Hodkinson, I.D., Webb, N.R., and Harrison, J.A. 2002. Survival of saltwater immersion by terrestrial invertebrates. Implications for the colonisation of Arctic islands. Functional Ecology, 16: 353356.Google Scholar
Couturier, M., Hicks, J.B., Rouison, D., and Pelletier, Y. 2005. Thermal initiation of thanatosis to improve the pneumatic removal of the Colorado potato beetle. Canadian Biosystems Engineering, 47: 2.5–2.12.Google Scholar
de Sousa, W.O., Marques, M.I., Rosado-Neto, G.H., and Adis, J. 2007. Surface swimming behavior of the curculionid Ochetina uniformis Pascoe (Erirhininae, Stenopelmini) and Ludovix fasciatus (Gyllenhal) (Curculioninae, Erodiscini). Revista Brasileira de Entomologia, 51: 8792.CrossRefGoogle Scholar
Ditsche-Kuru, P., Barthlott, W., and Koop, J.H.E. 2012. At which surface roughness do claws cling? – investigation with the larvae of the running water mayfly larvae Epeorus assimilis (Heptageniidae, Ephemeroptera). Zoology, 115: 379388.Google Scholar
Dunn, E. 1949. Colorado beetle in the Channel Islands, 1947 and 1948. Annals of Applied Biology, 36: 525534.Google Scholar
Feytaud, J. 1930. Recherches sur Leptinotarsa decemlineata Say. 1. Observations biologiques. Annales des Epiphyties, 16: 303390.Google Scholar
Feytaud, J. 1938. Le rôle des facteurs naturels dans la dissémination du doryphore en Europe. Proceedings of the Seventh International Congress of Entomology, 4: 26552659.Google Scholar
Fielde, A.M. 1904. Tenacity of life in ants. Biological Bulletin, 7: 300309.Google Scholar
Gibson, A., Gorham, R.P., Hudson, H.F., and Rock, J.A. 1925. The Colorado potato beetle, Leptinotarsa decemlineata Say in Canada. Canada Department of Agriculture, Bulletin, 52: 130.Google Scholar
Gillespie, D.R., Nasreen, A., Moffat, C.E., Clarke, P., and Roitberg, B.D. 2012. Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos, 121: 149159.CrossRefGoogle Scholar
Griff, E.R. and Kane, T. 2010. A housefly sensory-motor integration laboratory. Advances in Physiology Education, 34: 106110.CrossRefGoogle ScholarPubMed
Grison, P. 1963. Le doryphore de la pomme de terre. In Entomologie Appliquée à l’agriculture, Tome 1: Coléoptères. Edited by A.S. Balachowsky. Masson et Cie, Paris, France. Pp. 640738.Google Scholar
Grison, P., Le Berre, J-R., and Roubaud, É. 1954. Observations concernant l’enfouissement estival du Doryphore Leptinotarsa decemlineata Say au cours des cinq dernières années. Comptes Rendus des Séances Academié D’agriculture de France, 40: 257259.Google Scholar
Hawes, T.C. 2008. Feeding behavior in the Antarctic fairy shrimp, Branchinecta gaini . Polar Biology, 31: 12871289.Google Scholar
Hawes, T.C., Worland, M.R., Bale, J.S., and Convey, P. 2008. Rafting in Antarctic Collembola. Journal of Zoology, 274: 4450.CrossRefGoogle Scholar
Hebets, E.A. and Chapman, R.F. 2000. Surviving the flood: plastron respiration in the non-tracheate arthropod Phrynus marginemaculatus (Amblypygi; Arachnida). Journal of Insect Physiology, 46: 1319.Google Scholar
Heitler, W.J., Mitchell, J.L., and Dinwiddie, L. 2005. Underwater locomotion in the desert locust: behavioural choice when confronted with an aquatic barrier. Journal of Insect Behaviour, 18: 669683.Google Scholar
Holzapfel, E.P. and Harrell, J.C. 1968. Transoceanic dispersal studies of insects. Pacific Insects, 10: 115153.Google Scholar
Hurst, G.W. 1975. Meteorology and the Colorado potato beetle. Secretariat of the World Meteorological Organization, Geneva, Switzerland.Google Scholar
Kaczmarek, W. 1955. Les perspectives de la lutte biologique contre le doryphore (Leptinotarsa decemlineata Say). Bulletin de l’Académie polonaise des sciences, 11: 219224.Google Scholar
Kovac, H., Stabentheiner, A., Hetz, S.K., Petz, M., and Crailsheim, K. 2007. Respiration of resting honeybees. Journal of Insect Physiology, 53: 12501261.Google Scholar
Krishnan, S.N., Sun, Y., Mohsenin, A., Wyman, R.J., and Haddad, G.G. 1997. Behavioral and electrophysiologic responses of Drosophila melanogaster to prolonged periods of anoxia. Journal of Insect Physiology, 43: 203210.Google Scholar
Le Berre, J.-R. and Louveaux, A. 1980. Biologie du doryphore. Bulletin de l’Organisation européenne et méditerranéenne pour la protection des plantes (OEPP), 10: 413440.Google Scholar
Lopez, E., Roth, L., Ferro, D., Hosmer, D., and Mafra-Neto, A. 1997. Behavioral ecology of Myiopharus doryphorae (Riley) and M. aberrans (Townsend), tachinid parasitoids of the Colorado potato beetle. Journal of Insect Behavior, 10: 4978.Google Scholar
MacQuarrie, C.J.K. and Boiteau, G. 2003. Effect of diet and feeding history on flight of Colorado potato beetle, Leptinotarsa decemlineata . Entomologia Experimentalis et Applicata, 107: 207213. doi:10.1046/j.1570-7458.2003.00058.x.Google Scholar
Martay, B., Robertshaw, T., Doberski, J., and Thomas, A. 2014. Does dispersal limit beetle re-colonization of restored fenland? A case study using direct measurements of dispersal and genetic analysis. Restoration Ecology, 22: 590597. doi:10.1111/rec.12118.CrossRefGoogle Scholar
Misener, G.C. and Boiteau, G. 1993. Holding capability of the Colorado potato beetle to potato leaves and plastic surfaces. Canadian Agricultural Engineering, 35: 2731.Google Scholar
Mlot, N.J., Tovey, C.A., and Hu, D.L. 2011. Fire ants self-assemble into waterproof rafts to survive floods. Proceedings of the National Academy of Sciences, 108: 76697673.Google Scholar
Niehues, F.-J., Hockmann, P., and Weber, F. 1996. Genetics and dynamics of a Carabus auronitens metapopulation in the Westphalian lowlands (Coleoptera, Carabidae). Annales of Zoologia Fennici, 33: 8596.Google Scholar
Niem, J., Gundersen, B., and Inglis, D.A. 2013. Effect of soil flooding on survival of two potato pathogens, Sclerotinia sclerotiorum and Verticillium dahliae . American Journal of Potato Research, 90: 578590. doi:10.1007/s12230-013-9332-1.Google Scholar
Peck, S.B. 1994. Sea-surface (pleuston) transport of insects between islands in the Galápagos Archipelago, Ecuador. Annals of the Entomological Society of America, 87: 576582.Google Scholar
Pederson, O. and Colmer, T.D. 2012. Physical gills prevent drowning of many wetland insects, spiders and plants. The Journal of Experimental Biology, 215: 705709.Google Scholar
Pelletier, Y. and Caissie, R. 2001. Behavioral and physical reactions of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) walking on a slanted surface. Biological Cybernetics, 84: 269277.Google Scholar
Pelletier, Y. and McLeod, C.D. 1994. Obstacle perception by insect antennae during terrestrial locomotion. Physiological Entomology, 19: 360362. doi:10.1111/j.1365-3032.1994.tb01063.x.Google Scholar
Pullin, A.S. 1999. Changing water levels and insect submergence – a neglected threat. Journal of Insect Conservation, 3: 169170.Google Scholar
Rothenbucher, J. and Schaefer, M. 2006. Submersion tolerance in floodplain arthropod communities. Basic and Applied Ecology, 7: 398408.Google Scholar
SAS Institute. 2002. SAS version 9.3. SAS Institute, Cary, North Carolina, United States of America.Google Scholar
Seymour, R.S. and Matthews, P.G.D. 2013. Physical gills in diving insects and spiders: theory and experiment. Journal of Experimental Biology, 216: 164170.Google Scholar
Termier, M., Lafay, J-F., Dutrieux, G., and Mainguet, A.M. 1988. Étude de l’action de certains facteurs sur les performances de vol du doryphore Leptinotarsa decemlineata (Say). Oecologica Applicata, 9: 219248.Google Scholar
Thankachan, A.P. and Nadarajan, L. 2005. Non-insecticidal approach to manage rice thrips (Stenchaetothrips biformis Bagnall (Thysanoptera: Thripidae) in Karaikal region. In Green pesticides for insect pest management. Edited by S. Ignacimuthu and S. Jayaraj. Alpha Science, Narosa Publishing House, Delhi, India. Pp. 227233.Google Scholar
Thomas, J. and Dunn, E. 1951. Colorado beetle in England, 1950. Agriculture, 58: 135139.Google Scholar
Trewick, S.A. 2001. Scree weta phylo-geography: surviving glaciation and implications for Pleistocene biogeography in New Zealand. New Zealand Journal of Zoology, 28: 291298.CrossRefGoogle Scholar
Turchin, P. 1998. Quantitative analysis of movement: measuring and modelling population redistribution in animals and plants. Sinauer Associates, Sunderland, Massachusetts, United States of America.Google Scholar
Unruh, T.R. and Chauvin, R.L. 1993. Elytral punctures: a rapid, reliable method for marking Colorado potato beetle. The Canadian Entomologist, 125: 5563.CrossRefGoogle Scholar
VassarStats. 2015. Website for statistical computation [online]. Available from www.vassarstats.net [accessed 11 August 2016].Google Scholar
Weber, D.C. and Ferro, D.N. 1996. Flight and fecundity of Colorado potato beetles (Coleoptera: Chrysomelidae) fed on different diets. Annals of the Entomological Society of America, 89: 297306.CrossRefGoogle Scholar
Weber, N.A. 1950. A survey of the insects and related arthropods of Arctic Alaska. Part I. Transactions of the American Entomological Society, 76: 147206.Google Scholar
Xu, Z., Lenaghan, S.C., Reese, B.E., Jia, X., and Zhang, M. 2012. Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae). Public Library of Science Computational Biology, 8: e1002792. doi:10.1371/journal.pcbi.1002792.Google Scholar