Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:03:21.380Z Has data issue: false hasContentIssue false

RESPIRATION AND DROWNING IN OVERWINTERING PUPAE OF HELIOTHIS ZEA (BODDIE)

Published online by Cambridge University Press:  31 May 2012

D.W. Williams
Affiliation:
IPM Implementation Group, University of California, Davis, California, USA95616
R.E. Stinner
Affiliation:
Department of Entomology, North Carolina State University, Raleigh, North Carolina, USA27650

Abstract

Respiration rates and drowning times after complete submergence were observed in diapausing Heliothis zea (Boddie) pupae at 5, 10, 15, 20, and 27°C. Respiration rate in pupae 2.5–12 weeks in diapause increased as an exponential function of temperature. The respiration rate of post-diapause pupae at 27°C increased over 10-fold in an approximately linear fashion during 12 days of pharate adult development. Time to 50% drowning in diapausing pupae decreased with increasing temperature, varying from 22.9 to 4.1 days at 5 and 27°C, respectively. Drowning rates in these pupae increased approximately exponentially with temperature. Diapausing and post-diapause pupae at 27°C had similar times to 50% drowning. An empirical model of drowning fitted the results well at all five temperatures, but a mechanistic model based on respiration predicted drowning considerably before it was observed. When the latter model was modified to allow withdrawal of dissolved oxygen from the water, it predicted longer survival periods, as observed. Our evidence suggests that respiration and drowning rates are closely correlated. Given the long survival times under complete submergence at 5–20°C, we speculate that pupae overwintering in the field in deep diapause are relatively resistant to drowning, whereas pre- and post-diapause pupae, with higher respiration rates, are at much greater risk.

Résumé

On a mesuré le taux de respiration et le temps de survie en submersion complète chez des pupes d’Heliothis zea (Boddie) à 5, 10, 15, 20 et 27°C. Le taux de respiration de pupes en diapause depuis 2,5 à 12 semaines a augmenté exponentiellement avec la température. Le taux de respiration de pupes post-diapausantes à 27°C s’est accru linéairement de plus de 10 fois au cours de 12 jours du développement de l’adulte pharate. La médiane du temps de survie en submersion a diminué avec la température, passant de 22,9 à 4,1 jours, entre 5 et 27°C. La mortalité de ces pupes s’est accrue de façon à peu près exponentielle avec la température. Les pupes diapausantes et post-diapausantes ont montré une survie médiane semblable à 27°C. On a pu obtenir un modèle empirique de la survie qui était bien ajusté aux résultats pour les cinq températures, mais un modèle théorique basé sur la respiration a sous-estimé le temps de survie en submersion. En modifiant ce modèle de façon à permettre l’extraction d’oxygène à partir de l’eau, la survie prédite a augmenté, tel qu’observé. Nos résultats indiquent que la respiration et la survie en submersion sont étroitement corrélées. Vu la survie prolongée en submersion à 5–20°C, il est permis de supposer que les pupes hivernantes en diapause profonde sur le terrain sont relativement résistantes à la submersion, alors que les pupes pré- et post-diapausantes, avec leurs taux de respiration plus élevés, sont plus menacées.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, P.L., and Dittmer, D.S.. 1971. Respiration and circulation. Fed. Am. Soc. Exp. Biol. Bethesda, MD. 930 pp.Google Scholar
Barber, G.W., and Dicke, F.F.. 1937. The effectiveness of cultivation as a control for the corn earworm. USDA Tech. Bull. 561. 16 pp.Google Scholar
Barber, G.W., and Dicke, F.F.. 1939. Effect of temperature and moisture on overwintering pupae of the corn earworm in the northeastern United States. J. Agric. Res. 59: 711723.Google Scholar
Blanchard, R.A. 1942. Hibernation of the corn earworm in the central and northeastern parts of the United States. USDA Tech. Bull. 838. 13 pp.Google Scholar
Buck, J., and Keister, M.. 1958. Cyclic O2 release in diapausing pupae. II. Tracheal anatomy, volume and PCO2; blood volume; interburst CO2 release rate. J. Insect Physiol. 1: 327340.CrossRefGoogle Scholar
Burton, R.L. 1970. A low-cost artificial diet for the corn earworm. J. econ. Ent. 63: 19691970.CrossRefGoogle Scholar
Carbon, B.A., and Galbraith, K.A.. 1975. Simulation of the water balance for plants growing on coarse-textured soils. Austr. J. Soil Res. 13: 2131.CrossRefGoogle Scholar
Caron, R.E., Bradley, J.R., Pleasants, R.H., Rabb, R.L., and Stinner, R.E.. 1978. Overwinter survival of Heliothis zea produced on late-planted field corn in North Carolina. Environ. Entomol. 7: 193196.CrossRefGoogle Scholar
Fletcher, R.K. 1939. Cotton bollworm. Tex. Agric. Exp. Sta. 51st Annu. Rep. p. 45.Google Scholar
Hodgman, C.D. 1959. Handbook of chemistry and physics, 40th ed. Chemical Rubber Publ. Co., Cleveland.Google Scholar
Holtzer, T.O., Bradley, J.R., and Rabb, R.L.. 1976. Effects of various temperature regimes on the time required for emergence of diapausing Heliothis zea. Ann. ent. Soc. Am. 69: 257260.CrossRefGoogle Scholar
Keister, M., and Buck, J.. 1973. Respiration: some exogenous and endogenous effects on rate of respiration. In Rockstein, M. (Ed.), The Physiology of Insecta, vol. 3. Academic Press, New York. 692 pp.Google Scholar
Manetsch, T.J. 1976. Time-varying distributed delays and their use in aggregative models of large systems. IEEE Trans. Syst., Man, Cyber. 6: 547553.CrossRefGoogle Scholar
Mansingh, A. 1971. Physiological classification of dormancies in insects. Can. Ent. 103: 9831009.CrossRefGoogle Scholar
Phillips, J.R., and Newsom, L.D.. 1966. Diapause in Heliothis zea and Heliothis virescens. Ann. ent. Soc. Am. 59: 154159.CrossRefGoogle Scholar
Phillips, W.J., and Barber, G.W.. 1929. A study of hibernation of the corn earworm in Virginia. Va. Agric. Exp. Sta. Tech. Bull. 40. 24 pp.Google Scholar
Quaintance, A.L., and Brues, C.T.. 1905. The cotton bollworm. Bur. ent. Bull. 50. 155 pp.Google Scholar
Rahn, H., and Paganelli, C.V.. 1968. Gas exchange in gas gills of diving insects. Resp. Physiol. 5: 145164.CrossRefGoogle ScholarPubMed
Stadelbacher, E.A., and Pfrimmer, T.R.. 1972. Winter survival of the bollworm at Stoneville, Mississippi. J. econ. Ent. 65: 10301034.CrossRefGoogle Scholar
Stinner, R.E., Rabb, R.L., and Bradley, J.R.. 1974. Population dynamics of Heliothis zea and H. virescens in North Carolina: a simulation model. Environ. Ent. 3: 163168.CrossRefGoogle Scholar
Umbreit, W.W., Burns, R.H., and Strauffer, J.F.. 1964. Manometric techniques, 4th ed. Burgess Publ. Co., Minneapolis. 305 pp.Google Scholar
Weis-Fogh, T. 1964. Diffusion in insect wing muscle, the most active tissue known. J. Exp. Biol. 41: 229256.CrossRefGoogle ScholarPubMed
Young, J.H., and Price, R.G.. 1968. Effect of irrigation and submersion in water on the pupal survival of the bollworm. J. econ. Ent. 61: 959961.CrossRefGoogle Scholar