Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T16:26:28.521Z Has data issue: false hasContentIssue false

RESOURCE PARTITIONING IN A GUILD OF MARSH-DWELLING AGONUM (COLEOPTERA: CARABIDAE) IN CENTRAL ALBERTA

Published online by Cambridge University Press:  31 May 2012

Jean-François Landry
Affiliation:
Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3

Abstract

The spatial and temporal distribution of microsympatric species of marsh-inhabiting Agonum were investigated in central Alberta. Agonum nigriceps LeC., A. ferruginosum Dej., A. thoreyi Dej., and A. lutulentum (LeC.) were the most abundant carabid species in the emergent vegetation of the flooded zone. Agonum nigriceps was segregated from the other species through habitat use, being most abundant in emergent sedge tussocks. Agonum ferruginosum was most abundant in floating cattail mats, whereas A. thoreyi was rather evenly distributed across macrohabitats. Within flooded macrohabitats both A. ferruginosum and A. thoreyi predominantly occupied microsites with emergent substrate or clumps of dead vegetation. In one marsh where A. ferruginosum co-occurred with A. lutulentum, their macrohabitat distributions were mutually exclusive. Reproduction began earlier and teneral adults emerged earlier for both A. nigriceps and A. ferruginosum than for A. thoreyi. Agonum nigriceps, A. ferruginosum, and A. thoreyi were all nocturnal and showed no differences in daily activity pattern. In laboratory experiments, adults of A. nigriceps displayed the highest propensity to climb on narrow vertical structures, a behavior correlated with their main habitat association with structurally simple emergent sedge habitat. Adults of A. nigriceps are cryptically colored to blend into their habitat background.

Résumé

L’auteur a étudié la répartition spatiale et temporelle d’espèces microsympatriques d’Agonum peuplant des marais du centre de l’Alberta. Agonum nigriceps LeC, A. ferruginosum Dej., A. thoreyi Dej. et A. lutulentum (LeC.) étaient les espèces de Carabidae les plus abondantes dans la végétation émergente de la zone inondée. Agonum nigriceps se trouvait isolé des autres espèces par des caractéristiques différentes d’habitats, étant plus abondant parmi les touffes émergentes de carex. Agonum ferruginosum était plus abondant dans les quenouilles dans un des marais, et plus abondant dans les carex inondés dans un autre marais. Là où A. ferruginosum se trouvait dans le même marais qu’A. lutulentum, leurs occupations des macrohabitats s’excluaient mutuellement. Agonum thoreyi était distribué assez également dans tous les macrohabitats. Dans les macrohabitats inondés, les deux espèces A. ferruginosum et A. thoreyi étaient dominantes dans les microsites à substrat émergent ou à monceaux de végétation morte. La période de reproduction et l’éclosion des ténéraux sont plus hâtives chez A. nigriceps et A. ferruginosum que chez A. thoreyi. Agonum nigriceps, A. ferruginosum et A. thoreyi étaient tous nocturnes et aucune différence n’était perceptible dans les cycles d’activité quotidienne. Au cours d’expériences de laboratoire, les adultes d’A. nigriceps manifestaient la plus forte propension à grimper sur des objets verticaux étroits, un trait de comportement relié à leur occupation d’un habitat à structure simple et constitué de carex émergents. Les adultes d’A. nigriceps ont une coloration cryptique qui se marie avec le milieu ambiant.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, J. 1978. The effect of inundation and choice of hibernation sites of Coleoptera living on river banks. Norsk Entomologisk Tidsskrift 15: 115133.Google Scholar
Andersen, J. 1983. The habitat distribution of species of the tribe Bembidiini (Coleoptera, Carabidae) on banks and shores in northern Norway. Notulae Entomologicae 63: 131142.Google Scholar
Buse, A. 1988. Habitat selection and grouping of beetles (Coleoptera). Holarctic Ecology 11: 241247.Google Scholar
Dawson, N. 1965. A comparative study of the ecology of eight species of fenland Carabidae (Coleoptera). Journal of Animal Ecology 34: 299314.CrossRefGoogle Scholar
den Boer, P.J. 1968. Spreading of risk and stabilization of animal numbers. Acta Biotheoretica 18: 165194.CrossRefGoogle ScholarPubMed
den Boer, P.J. 1985. Exclusion, competition or coexistence? A question of testing the right hypothesis. Zeitschrift für Zoologische Systematisk und Evolutionsforschung 23: 259274.CrossRefGoogle Scholar
den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F. (Eds.). 1986. Carabid Beetles, their Adaptations and Dynamics. Gustav Fischer, Stuttgart. 551 pp.Google Scholar
Gilbert, O. 1956. The natural histories of four species of Calathus (Coleoptera, Carabidae) living on sand dunes in Anglesey, North Wales. Oikos 7: 2247.CrossRefGoogle Scholar
Goulet, H. 1974. Biology and relationships of Pterostichus adstrictus Eschscholtz and Pterostichus pensylvanicus Leconte (Coleoptera: Carabidae). Quaestiones Entomologicae 10: 333.Google Scholar
Greenquist, E.A., and Rovner, J.S.. 1976. Lycosid spiders on artificial foliage: Substratum choice, orientation preferences, and prey-wrapping. Psyche 83: 196209.CrossRefGoogle Scholar
Greenslade, P.J.M. 1965. On the ecology of some British carabid beetles with special reference to life histories. Transactions of the Society for British Entomology 16: 149179.Google Scholar
Hutchinson, G.E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93: 145159.CrossRefGoogle Scholar
Hutchinson, G.E. 1965. The Ecological Theater and the Evolutionary Play. Yale University Press, New Haven, CT. 139 pp.Google Scholar
Hutchinson, G.E. 1975. Variations on a theme by Robert MacArthur. pp. 492–521 in Cody, M.L., and Diamond, J.M. (Eds.), Ecology and Evolution of Communities. Belknap Press of Harvard University, Cambridge, MA. 838 pp.Google Scholar
Lindroth, C.H. 1966. The ground beetles (Carabidae, excl. Cicindelinae) of Canada and Alaska. Opuscula Entomologica Supplement 29: 409648.Google Scholar
Loreau, M. 1986. Niche differentiation and community organization in forest carabid beetles. pp. 465–487 in den Boer, P.J., Luff, M.L., Mossakowski, D., and Weber, F. (Eds.), Carabid Beetles, their Adaptations and Dynamics. Gustav Fischer, Stuttgart. 551 pp.Google Scholar
Moss, E.H. 1953. Marsh and bog vegetation in Northwestern Alberta. Canadian Journal of Botany 31: 448470.CrossRefGoogle Scholar
Moss, E.H. 1955. The vegetation of Alberta. Botanical Review 21: 493567.CrossRefGoogle Scholar
Murdoch, W.W. 1966. Aspects of the population dynamics of some marsh Carabidae. Journal of Animal Ecology 35: 127156.CrossRefGoogle Scholar
Niemelä, J. 1993. Interspecific competition in ground-beetle assemblages (Carabidae): What have we learned? Oikos 66: 325335.CrossRefGoogle Scholar
Niemelä, J., Haila, Y., Halme, E., Lahti, T., Pajunen, T., and Punttila, P.. 1988. The distribution of carabid beetles in fragments of old coniferous taiga and adjacent managed forest. Annales Zoologici Fennici 25: 107119.Google Scholar
Niemelä, J., Spence, J.R., and Spence, D.H.. 1992. Habitat associations and seasonal activity of ground-beetles (Coleoptera, Carabidae) in central Alberta. The Canadian Entomologist 124: 521540.CrossRefGoogle Scholar
Paarmann, W. 1966. Vergleichende Untersuchungen uber die Bindung zweir Carabidenarten (P. angustatus Dft. und P. oblongopunctatus F.) an ihre verschiedenen Lebensraume. Zeitschrift für Wissenschaftliche Zoologie 174: 83176.Google Scholar
Schoener, T.W. 1982. The controversy over interspecific competition. American Scientist 70: 586695.Google Scholar
Siepel, H. 1988. A quantitative model on the population dynamics of Pterostichus oblongopunctatus F. (Coleoptera; Carabidae) with special reference to the larval stage. Revue d'écologie et de biologie du sol 25: 435450.Google Scholar
Spence, J.R. 1979. Riparian carabid guilds. A spontaneous question generator. pp. 525–537 in Erwin, T.L., Ball, G.E., Whitehead, D.R., and Halpern, A.L. (Eds.), Carabid Beetles, their Evolution, Natural History and Classification. W. Junk bv Publishers, The Hague. 635 pp.Google Scholar
Spence, J.R. 1981. Experimental analysis of microhabitat selection in water-striders (Heteroptera: Gerridae). Ecology 62: 15051514.CrossRefGoogle Scholar
Spence, J.R., and D.H., Spence. 1988. Of ground-beetles and men: Introduced species and the synanthropic fauna of western Canada. pp. 151–168 in Downes J., A., and Kavanaugh, D.H. (Eds.), Origins of the North American Insect Fauna. Memoirs of the Entomological Society of Canada 144: 168 pp.Google Scholar
Thiele, H.U. 1977. Carabid Beetles in their Environment. Springer-Verlag, Berlin. 369 pp.CrossRefGoogle Scholar
Thiele, H.U. 1979. Relationships between annual and daily rhythms, climatic demands and habitat selection in carabid beetles. pp. 449–470 in Erwin, T.L., Ball, G.E., Whitehead, D.R., and Halpern, A.L. (Eds.), Carabid Beetles, their Evolution, Natural History and Classification. W. Junk bv Publishers, The Hague. 635 pp.Google Scholar
Vlijm, L., and van Dijk, T.S.. 1967. Ecological studies on carabid beetles. Zeitschrift für Morphologie und Ökologie der Tiere 58: 396404.CrossRefGoogle Scholar
Wasner, U. 1979. Zur Ökologie und Biologie sympatrischer Agonum (Europhilus)-Arten (Carabidae, Coleoptera). Zoologische Jahrbücher, Abteilung für Systematik 106: 105123.Google Scholar
Wilson, D.S. 1975. The adequacy of body size as a niche difference. American Naturalist 109: 769784.Google Scholar
Wolda, H. 1989. Comment on the article “On testing temporal niche differentiation in carabid beetles” by M. Loreau and the “Comment on the article of M. Loreau” by P.J. den Boer. Oecologia 81: 99.CrossRefGoogle Scholar