Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T21:15:08.847Z Has data issue: false hasContentIssue false

RESIDUAL TOXICITY OF DICOFOL, FORMETANATE HCl, PROPARGITE, HEXYTHIAZOX, AND CLOFENTEZINE TO EUROPEAN RED MITE ON PEACH

Published online by Cambridge University Press:  31 May 2012

D.J. Pree
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0
D.B. Marshall
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0
B.D. McGarvey
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0

Abstract

The persistence of toxic effects of the contact acaricides dicofol, propargite, and formetanate HCl and the ovicides clofentezine and hexythiazox to the European red mite, Panonychus ulmi (Koch), were tested by bioassays of disks cut from treated peach foliage. Effects of dicofol were more persistent than propargite or formetanate HCl to susceptible mites. Mortality on dicofol-treated foliage was >50% for more than 15 days. Propargite killed >50% of females for 10 days after application, whereas the toxicity of formetanate HCl deposits declined rapidly after 7 days. Mortality of dicofol-resistant mites was less than for susceptible mites. However, resistant mites were affected (>50% killed) by dicofol residues up to 7 days old. The toxic effects of the ovicides clofentezine and hexythiazox persisted for at least 30 days and at the rates tested were approximately equally toxic.

Formetanate HCl and propargite residues were less persistent (half-life 8–9 days) than the other compounds. Dicofol residues had a half-life of about 15 days but approximately 10% of residues persisted for 65 days. Residues of clofentezine and hexythiazox declined more gradually (half-life = 15–20 days) than other compounds and persisted at approximately 10% of initial residues after 65 days.

Résumé

La persistance des effets toxiques des acaricides de contact dicofol, propargite et formetanate HCl, et des ovicides clofentézine et hexythiazox, sur le Tétranyque rouge du pommier, Panonychus ulmi (Koch), a été déterminée au cours d’expériences de dosage sur des disques prélevés à même des feuilles de pêchers. Les effets du dicofol sont plus persistants que ceux des autres acaricides, propargite et formetanate HCl, chez les acariens sensibles. La mortalité sur le feuillage traité au dicofol est supérieure à50% durant plus de 15 jours. La mortalité des femelles est supérieure à50% durant 10 jours après l’application de propargite, alors que la toxicité des dépôts de formetanate HCl diminue rapidement après 7 jours. La mortalité chez les acariens résistants au dicofol est moins élevée que celle qui prévaut chez les acariens sensibles. Cependant, les acariens résistants sont tout de même affectés (plus de 50% tués) par les résidus de dicofol pour une durée de 7 jours. Les effets toxiques des ovicides clofentézine et hexythiazox persistent pour au moins 30 jours et, aux doses employées, ces produits ont à peu près la même toxicité.

Les résidus de formetanate HCl et de propargite sont moins persistants (demi-vie 8–9 jours) que les autres produits. Les résidus de dicofol ont une demi-vie d’environ 15 jours, mais environ 10% des résidus peuvent persister jusqu’à 65 jours. Les résidus de clofentézine et d’hexythiazox diminuent plus progressivement (demi-vie = 15–20 jours) que les autres produits et environ 10% des résidus initiaux persistent plus de 65 jours.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiba, M., and Herne, D.C.. 1975. Accumulation of dicofol deposits on peach leaves with time when sprayed with deVilbiss sprayer. J. econ. Ent. 68: 107109.CrossRefGoogle Scholar
Croft, B.A. 1990. Arthropod Biological Control Agents and Pesticides. Wiley-Interscience, New York, NY.Google Scholar
Edge, V.E., Rophail, J., and James, D.G.. 1987. Acaricide resistance in two spotted mite Tetranychus urticae in Australian horticultural crops. pp. 8790in Proceedings of the Symposium on Mite Control in Horticultural Crops. Orange N.S.W. Australia. Agdex 200/622.Google Scholar
Fisher, R.W., and Morgan, N.G.. 1968. The effect on two spotted spider mite, Tetranychus urticae, of dicofol concentration and deposit distribution on the leaf surface. Can. Ent. 100: 777781.CrossRefGoogle Scholar
Fisher, S.W., and Wrensch, D.L.. 1986. Quantification of biological effectiveness for pesticides against Tetranychus urticae. J. econ. Ent. 79: 14721476.CrossRefGoogle Scholar
Gerson, U., and Cohen, E.. 1989. Resurgence of spider mites (Acari: Tetranychidae) induced by synthetic pyrethroids. Exp. appl. Acarol. 6: 2946.CrossRefGoogle Scholar
Herne, D.C., and Chiba, M.. 1975. Mortality of the European red mite relative to distribution and degradation of dicofol deposits on peach leaves. Can. Ent. 107: 801806.CrossRefGoogle Scholar
Hislop, R.G., and Prokopy, R.J.. 1981. Integrated management of phytophagous mites in Massachusetts (U.S.A.) apple orchards 2. Influence of pesticides on the predator Amblyseius fallacis under laboratory and field conditions. Prot. Ecol. 3: 157172.Google Scholar
Kolmes, S.A., Dennehy, T.J., and Frisicano, L.. 1990. Behavioral aspects of dicofol resistance in the twospotted spider mite Tetranychus urticae. Entomologia exp. appl. 57: 259269.CrossRefGoogle Scholar
Marshall, D.B., and Pree, D.J.. 1991. Effect of miticides on the life stages of the European red mite Panonychus ulmi (Koch). Can. Ent. 123: 7787.CrossRefGoogle Scholar
Penman, D.R., and Chapman, R.B.. 1988. Pesticide-induced mite outbreaks: Pyrethroids and spider mites. Exp. appl. Acarol. 4: 265276.CrossRefGoogle Scholar
Pree, D.J. 1990. Resistance management in multiple-pest apple orchard ecosystems in eastern North America. pp. 261276in Roush, R.T., and Tabashnik, B.E. (Eds.), Pesticide Resistance in Arthropods. Chapman and Hall, New York, NY.CrossRefGoogle Scholar
Pree, D.J., Cole, K.J., and Fisher, P.A.. 1989. Comparisons of leaf disk and Petri dish assays for the assessment of dicofol resistance in populations of European red mite from southern Ontario. Can. Ent. 121: 771776.CrossRefGoogle Scholar
Pree, D.J., Herne, D.H.C., Phillips, J.H.H., and Roberts, W.P.. 1983. Pest management program for peach series: Mite pests of peach. OMAF Factsheet. 83–077. 3 pp.Google Scholar
Pree, D.J., Menzies, D.R., Braun, H.E., and Fisher, R.W.. 1984. Influence of simulated rains on phosmet residues and Oriental fruit moth control on peach. J. econ. Ent. 77: 483486.CrossRefGoogle Scholar
Pree, D.J., Menzies, D.R., and Fisher, R.W.. 1981. Effects of rainfall on persistence of phosmet residues on peach: Implications for integrated pest management programs. J. econ. Ent. 74: 535538.CrossRefGoogle Scholar
Pree, D.J., and Wagner, H.W.. 1987. Occurrence of cyhexatin and dicofol resistance in the European red mite, Panonychus ulmi, in southern Ontario. Can. Ent. 119: 287290.CrossRefGoogle Scholar
Prokopy, R.J., Coli, W.M., Hislop, R.G., and Hauschild, K.I.. 1980. Integrated management of insect and mite pests in commercial apple orchards in Massachusetts. J. econ. Ent. 73: 529535.CrossRefGoogle Scholar
Reissig, W.H., and Hull, L.A.. 1991. Hexythiazox resistance in a field population of European red mite on apples. J. econ. Ent. 84: 727735.CrossRefGoogle Scholar
Roush, R.T. 1989. Designing resistance management programs: How can you choose? Pestic. Sci. 26: 423441.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5 ed. SAS Institute, Cary, NC.Google Scholar
Schiffhauer, D.E., and Mizell, R.F. III, 1988. Behavioral response and mortality of nursery populations of two spotted spider mite to residues of six acaricides. J. econ. Ent. 81: 11551162.CrossRefGoogle Scholar
Taylor, C.E., and Georghiou, G.P.. 1982. Influence of pesticide persistence in calculation of resistance. Environ. Ent. 11: 746750.CrossRefGoogle Scholar
Thwaite, W.G. 1991. Resistance to clofentezine and hexythiazox in Panonychus ulmi from apples in Australia. Exp. appl. Acarol. 11: 7380.CrossRefGoogle Scholar
Watve, C.M., and Lienk, S.E.. 1975. Response of two phytoseiid mites to pesticides used in New York apple orchards. Environ. Ent. 4: 797800.CrossRefGoogle Scholar