Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:25:39.842Z Has data issue: false hasContentIssue false

REPRODUCTIVE BIOLOGY AND LABORATORY REARING OF CERANTHIA SAMARENSIS (VILLENEUVE) (DIPTERA: TACHINIDAE), A PARASITOID OF THE GYPSY MOTH, LYMANTRIA DISPAR (L.)

Published online by Cambridge University Press:  31 May 2012

F.W. Quednau
Affiliation:
Forestry Canada, Quebec Region, 1055 du P.E.P.S., PO Box 3800, Sainte-Foy, Quebec, Canada G1V 4C7

Abstract

Laboratory observations on the biology of Ceranthia samarensis (Villeneuve), a tachinid parasitoid of the gypsy moth, were carried out in the laboratory at 22 °C day/15 °C night, 85–90% RH, and a 12L:12D photoperiod. Older (5–6 days post-eclosion) males mated readily with newly emerged females. Mating success was 60%. The gestation period of the mated females was 10–12 days. Laboratory-reared (on diet) second- and third-instar gypsy moth larvae feeding on newly grown foliage of Quercus rubra L. were exposed to gravid females of the parasitoid. Ceranthia samarensis ovolarviposited on the body of the host. The first-instar larva penetrated the host cuticle and developed internally, forming a respiratory funnel that caused a dark circular scar on the lateral side of the caterpillar. The average number of progeny (puparia) produced over the lifetime of a C. samarensis female was 55.0 ± 5.0 (SE) and average longevity was 4.1 ± 1.7 (SE) days. Diapause of the puparia was facultative and induced by temperatures below 20 °C combined with a 12L:12D photoperiod. In nondiapause individuals, total generation time was 22–40 days. To obtain diapause insects, puparia were stored for2monthsat 15 °C, 100% RH, and 12L:12D photoperiod for development of pharate adults. Cold storage at 2–4 °C and 100% RH for at least 5 months was required to obtain up to 75% eclosion after 5–9 days the following year.

Résumé

Des observations sur la biologie de Ceranthia samarensis (Villeneuve), un parasitoïde tachinide de la spongieuse, furent réalisées au laboratoire à une température de 22 °C le jour et de 15 °C la nuit, 85–90% HR et 12L : 12N photopériode. Des mâles âgés de 5–6 jours après l’éclosion s’accouplaient mieux avec des femelles récemment écloses que des mâles plus jeunes. Le taux de réussite des accouplements était de 60%. La période de gestation de la femelle accouplée était de 10–12 jours. Des larves des deuxième et troisième stades de la spongieuse, élevées au laboratoire sur diète, ont été exposées sur feuillage tendre de Quercus rubra L. Les femelles de C. samarensis sont ovolarvipares; les oeufs éclosent dès qu’ils sont déposés sur le corps d’une chenille. L’asticot du premier stade pénètre le tégument de son hôte et, après une courte période libre dans l’hémocèle, le parasitoïde forme un tube respiratoire qui peut laisser une tache noire circulaire sur le côté de la chenille. Le nombre moyen de progénitures (pupes) obtenu par femelle était de 55,0 ± 5,0 (SE), et la longévité moyenne de 44,1 ± 1,7 (SE) jours. La diapause pupale facultative est provoquée par des températures au-dessous de 20 °C, sous une photopériode de 12L : 12N. Sans diapause, le cycle de vie du parasitoïde était de 22–40 jours. Pour obtenir des insectes en diapause, les pupes ont été exposées pendant 2 mois à 15 °C et 100% HR sous une photopériode de 12L : 12N. Pour l’hivernement, un séjour à 2–4 °C et 100% HR d’au moins 5 mois était requis pour obtenir jusqu’à 75% d’éclosions après 5–9 jours l’année suivante.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A.R., Owens, C.D., Shapiro, M., and Tardif, J.R.. 1981. Development of mass-rearing technology. pp. 599–619 in Doane, C.C., and MacManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. U.S.D.A. Technical Bulletin 1584: 757 pp. Washington, DC.Google Scholar
Clausen, C.P. 1940. Entomophagous Insects. McGraw-Hill, New York, NY. 688 pp.Google Scholar
Flanders, S.E. 1950. Regulation of ovulation and egg disposal in the parasitic Hymenoptera. The Canadian Entomologist 82: 134140.CrossRefGoogle Scholar
Gross, H.R., and Johnson, R.. 1985. Archytas marmoratus (Diptera: Tachinidae): Advances in large-scale rearing and associated biological studies. Journal of Economic Entomology 78: 13501353.CrossRefGoogle Scholar
Hassell, M.P. 1968. The behavioural responses of a tachinid fly (Cyzenis albicans Fall.) to its host, the winter moth (Operophtera brumata “L.]. Journal of Animal Ecology 37: 627639.CrossRefGoogle Scholar
Herting, B. 1960. Biologie der westpaläarktischen Raupenfliegen Dipt., Tachinidae. Monographien zur angewandten Entomologie (Beihefte zur Zeitschrift für angewandte Entomologie) 16: 188 pp.Google Scholar
Mills, N.J. 1990. Are parasitoids of significance in endemic populations of forest defoliators? Some experimental observations from gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). pp. 265‐274 in Watt, A.D., Leather, S.R., Hunter, M., and Kidd, N.A.C. (Eds.), Population Dynamics of Forest Insects. Intercept, Andover, UK. 408 pp.Google Scholar
Mills, N.J., Carl, K.P., and Kenis, M.. 1989. Annual Project Report for 1989. Commonwealth Agricultural Bureaux, International Institute of Biological Control, Delémont, Switzerland. 37 pp.Google Scholar
Mills, N.J., and Fischer, P.. 1984. Report. Gypsy Moth (Lymantria dispar): Work in Europe in 1984. Commonwealth Agricultural Bureaux, Commonwealth Institute of Biological Control, Delémont, Switzerland. 8 pp.Google Scholar
Mills, N.J., Fischer, P., and Glanz, W.-D.. 1986. Host exposure: A technique for the study of gypsy moth larval parasitoids under non-outbreak conditions. Proceedings of the 18th IUFRO World Congress, Division 2, 2: 277285.Google Scholar
Mills, N.J., and Nealis, V.G.. 1992. European field collections and Canadian releases of Ceranthia samarensis (Dipt.: Tachinidae), a parasitoid of the gypsy moth. Entomophaga 37: 181191.CrossRefGoogle Scholar
Odell, T.M., Butt, C.A., and Bridgeforth, A.W.. 1985. Lymantria dispar. pp. 355–367 in Singh, P., and Moore, R.F. (Eds.), Handbook of Insect Rearing, Vol. 2. Elsevier Science Publishers B.V., Amsterdam. 514 pp.Google Scholar
Odell, T.M., and Godwin, P.A.. 1979. Laboratory techniques for rearing Blepharipa pratensis, a tachinid parasite of gypsy moth. Annals of the Entomological Society of America 72: 632635.Google Scholar
Scaramuzza, L.C. 1930. Preliminary report on a study of the biology of Lixophaga diatraeae Tns. Journal of Economic Entomology 23: 9991004.CrossRefGoogle Scholar
Schröder, D. 1969. Lypha dubia (Fall.) (Dipt.: Tachinidae) as a parasite of the European pine shoot moth, Rhyacionia buoliana (Schiff.) (Lep.: Eucosmidae) in Europe. Commonwealth Agricultural Bureaux, Commonwealth Institute of Biological Control, Technical Bulletin 12: 4360.Google Scholar