Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T05:05:08.472Z Has data issue: false hasContentIssue false

Reproduction and survival in Melanoplus sanguinipes (Orthoptera: Acrididae) in response to resource availability and population density: the role of exploitative competition

Published online by Cambridge University Press:  02 April 2012

David H. Branson
Affiliation:
Ecology Center, Utah State University, Logan, Utah 84322, United States of America

Abstract

The relative importance of exploitative competition for resources on grasshopper reproductive allocation has not been fully examined. Given the large fluctuations in grasshopper densities that periodically occur in western North America, an increased understanding of how grasshopper survival and reproduction vary in response to intraspecific densities and per capita resource availability is important. I examined if exploitative resource competition could explain variation in reproductive allocation in Melanoplus sanguinipes (Fabricius) in response to resource availability and grasshopper population density. I also examined whether individual differences in competitive ability resulted in increased variance in egg production with low per capita resource availability. As expected with exploitative resource competition, per capita resource availability explained a significant amount of the variation in all reproductive characteristics examined. There was no effect of per capita resource availability on survival. Residuals of the regressions of egg production and vitellogenesis versus per capita resource availability did not differ for resource or density treatments, indicating that exploitative competition for resources played a more important role than interference competition in determining reproductive allocation in M. sanguinipes. Individual differences were evident, as variation around the mean of egg production increased with resource limitation. Exploitative competition for resources was important in determining both individual and population-level reproductive responses of grasshoppers to resource availability.

Résumé

L'influence relative de la compétition d'exploitation pour les ressources sur le budget de la reproduction n'a jamais été examinée en détail. Étant donné les fluctuations importantes de la densité des criquets migrateurs qui se produisent périodiquement dans l'ouest de l'Amérique du Nord, il est devenu nécessaire de mieux comprendre comment la survie et la reproduction varient en fonction des densités intraspécifiques et de la disponibilité des ressources per capita. J'ai cherché à déterminer si la compétition d'exploitation pour les ressources peut expliquer la variation dans le budget de la reproduction chez Melanoplus sanguinipes (Fabricius) en fonction de la disponibilité des ressources et de la densité de la population de criquets. J'ai examiné aussi si les différences individuelles de la capacité de compétition entraînent une augmentation de la variance dans la production d'oeufs lorsque la disponibilité des ressources per capita est faible. Comme on pouvait s'y attendre avec la compétition d'exploitation, la disponibilité des ressources per capita explique une partie importante de la variation de toutes les caractéristiques de la reproduction. La disponibilité des ressources per capita est sans effet sur la survie. Les résidus des régressions de la production d'oeufs et de la vitellogenèse en fonction de la disponibilité des ressources per capita ne diffèrent pas aux divers niveaux des ressources ou de la densité, ce qui indique que la compétition d'exploitation joue un plus grand rôle que la compétition d'interférence dans la détermination du budget de la reproduction chez M. sanguinipes. Il y a des différences individuelles importantes: en effet, plus les ressources sont limitées, plus la variation autour de la moyenne de la production d'oeufs est grande. La compétition d'exploitation pour les ressources joue un rôle important dans la détermination des stratégies reproductives en fonction de la disponibilité des ressources chez les criquets migrateurs, tant à l'échelle de l'individu qu'à celle de la population.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, S.W., Heifetz, Y. 1999. Density-dependent physiological phase in insects. Annual Review of Entomology 44: 317–41CrossRefGoogle ScholarPubMed
Bailey, C.G., Mukerji, M.K. 1976. Consumption and utilization of various host plants by Melanoplus bivittatus (Say) and M. femur-rubrum (DeGeer) (Orthoptera: Acrididae). Canadian Journal of Zoology 54: 1044–50CrossRefGoogle Scholar
Bellinger, R.G., Pienkowski, R.L. 1985. Non-random resorption of oocytes in grasshoppers (Orthoptera: Acrididae). The Canadian Entomologist 117: 1067–9CrossRefGoogle Scholar
Bellinger, R.G., Ravlin, F.W., Pienkowski, R.L. 1987. Maternal environment and variation in ovariole number among populations of Melanoplus femmurubrum and M. scudderi scudderi. Entomologia Experimentalis et Applicata 44: 7580CrossRefGoogle Scholar
Belovsky, G.E., Joern, A. 1995. The dominance of different regulating factors for rangeland grasshoppers. pp 359–86 in Cappuccino, N., Price, P. (Eds), Population dynamics: new approaches and synthesis. London: Academic PressCrossRefGoogle Scholar
Belovsky, G.E., Slade, J.B. 1993. The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68: 193201CrossRefGoogle Scholar
Belovsky, G.E., 1995. Dynamics of two Montana grasshopper populations: relationships among weather, food abundance and intraspecific competition. Oecologia 101: 383–96CrossRefGoogle ScholarPubMed
Belovsky, G.E., Slade, J.B., Chase, J.M. 1996. Mating strategies based on foraging ability: an experiment with grasshoppers. Behavioral Ecology 7: 438–44CrossRefGoogle Scholar
Bernays, E.A., Chapman, R.F. 1994. Host-plant selection by phytophagous insects. New York: Chapman and HallCrossRefGoogle Scholar
Branson, D.H. 2001. Reproductive allocation and survival in grasshoppers: effects of resource availability, grasshopper density, and parasitism. PhD dissertation, Utah State University, LoganGoogle Scholar
Callaghan, A., Holloway, G.J. 1999. The relationship between environmental stress and variance. Ecological Applications 9: 456–62CrossRefGoogle Scholar
Chapman, R.F. 1990. Food selection. pp 3972in Chapman, R.F., Joern, A. (Eds), Biology of grasshoppers. New York: John Wiley and SonsGoogle Scholar
Chapman, R.F. 1998. The insects: structure and function. 4th edition. Cambridge, United Kingdom: Cambridge University PressCrossRefGoogle Scholar
Chase, J.M., Belovsky, G.E. 1994. Experimental evidence for the included niche. American Naturalist 143: 514–27CrossRefGoogle Scholar
Crowl, T.A., Townsend, C.R., Bouwes, N., Thomas, H. 1997. Scales and causes of patchiness in stream invertebrate assemblages: top–down predator effects? Journal of the North American Benthological Society 16: 277–85CrossRefGoogle Scholar
de Souza Santos, P., Begon, M. 1987. Survival costs in grasshoppers. Functional Ecology 1: 215–21CrossRefGoogle Scholar
Dingle, H., Mousseau, T.A., Scott, S.M. 1990. Altitudinal variation in life cycle syndromes of California populations of the grasshopper, Melanoplus sanguinipes (F.). Oecologia 84: 199206CrossRefGoogle ScholarPubMed
Draper, N.R. 1981. Applied regression analysis. New York: John Wiley and SonsGoogle Scholar
Evans, E.W. 1992. Absence of interspecific competition among tallgrass prairie grasshoppers during a drought. Ecology 73: 1038–44CrossRefGoogle Scholar
Joern, A. 2000. What are the consequences of non-linear ecological interactions for grasshopper control strategies? pp 131–44 in Lockwood, J.A., Latchininsky, A.V., Sergeev, M.G. (Eds), Grasshoppers and grassland health. London: Kluwer Academic PublishersCrossRefGoogle Scholar
Joern, A., Behmer, S.T. 1998. Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecological Entomology 23: 174–84CrossRefGoogle Scholar
Joern, A., Gaines, S.B. 1990. Population dynamics and regulation in grasshoppers. pp 415–82 in Chapman, R.F., Joern, A. (Eds), Biology of grasshoppers. New York: John Wiley and SonsGoogle Scholar
Joern, A., Klucas, G. 1993. Intra- and interspecific competition between two abundant grasshopper species (Orthoptera: Acrididae) from a sandhills grassland. Environmental Entomology 22: 352–61CrossRefGoogle Scholar
Launois-Luong, M.H. 1978. Methode pratique d'interpretation de l'etat des ovaires des acridens du Sahel. Annales de Zoologie, Ecologie Animale 10: 569–87Google Scholar
Lockwood, J.A. 1997. Grasshopper population dynamics: a prairie perspective. pp 103–46 in Gangwere, S.K., Muralirangan, M.C., Muralirangan, M. (Eds), Bionomics of grasshoppers, katydids, and their kin. Wallingford, United Kingdom: CAB InternationalGoogle Scholar
Lomnicki, A. 1980. Regulation of population density due to individual differences and patchy environment. Oikos 35: 185–93CrossRefGoogle Scholar
McCaffery, A.R. 1975. Food quality and quantity in relation to egg production in Locusta migratoria migratorioides. Journal of Insect Physiology 21: 1551–8CrossRefGoogle Scholar
McCardle, B.H., Gaston, K.J., Lawton, J.H. 1990. Variation in the size of animal populations: patterns, problems and artifacts. Journal of Animal Ecology 59: 439–54CrossRefGoogle Scholar
Moerhrlin, G.S., Juliano, S.A. 1998. Plasticity of insect reproduction: testing models of flexible and fixed development in response to differing growth rates. Oecologia 115: 492500CrossRefGoogle Scholar
Monson, D.H., Estes, J.A., Bodkin, J.L., Siniff, D.B. 2000. Life history plasticity and population regulation in sea otters. Oikos 90: 457–68CrossRefGoogle Scholar
Muralirangan, M.C., Muralirangan, M., Partho, P.D. 1997. Feeding behavior and host selection strategies in acridids. pp 114–29 in Gangwere, S.K., Muralirangan, M.C., Muralirangan, M. (Eds), Bionomics of grasshoppers, katydids and their kin. New York: CAB InternationalGoogle Scholar
Nicholson, A.J. 1954. An outline of the dynamics of animal populations. Australian Journal of Zoology 2: 965CrossRefGoogle Scholar
Nylin, S., Gotthard, K. 1998. Plasticity in life-history traits. Annual Review of Entomology 43: 6383CrossRefGoogle ScholarPubMed
Papaj, D.R. 2000. Ovarian dynamics and host use. Annual Review of Entomology 45: 423–48CrossRefGoogle ScholarPubMed
Pfadt, R.E. 1994. Field guide to common western grasshoppers. Wyoming Agricultural Experiment Station Bulletin 912Google Scholar
Ritchie, M.E., Tilman, G.D. 1992. Interspecific competition among grasshoppers and their effect on plant abundance in experimental field environments. Oecologia 89: 524–32CrossRefGoogle ScholarPubMed
Smith, D.S., Northcott, F.E. 1951. The effects on the grasshopper Melanoplus mexicanus mexicanus (Sauss.) (Orthoptera: Acrididae) of varying nitrogen content in its food plant. Canadian Journal of Zoology 29: 279304CrossRefGoogle Scholar
SPSS Inc. 2000. Systat. Version 10. Chicago: SPSS IncGoogle Scholar
Stephens, D.W., Krebs, J.R. 1986. Foraging theory. Princeton, New Jersey: Princeton University PressGoogle Scholar
Terry, R.A., Tilley, J.M.A. 1964. The digestibility of the leaves and stems of perennial ryegrass, cocksfoot, timothy, tall fescue, lucerne and sainfoin as measured by an in vivo procedure. Journal of the British Grassland Society 19: 363–72CrossRefGoogle Scholar
Wall, R., Begon, M. 1987. Population density, phenotype, and reproductive output in the grasshopper Chortippus brunneus. Ecological Entomology 12: 331–9CrossRefGoogle Scholar
Willott, S.J. 1997. Thermoregulation in four species of British grasshoppers (Orthoptera: Acrididae). Functional Ecology 11: 705–13CrossRefGoogle Scholar
Willott, S.J., Hassall, M. 1998. Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Functional Ecology 12: 232–41CrossRefGoogle Scholar
Zar, J.H. 1999. Biostatistical analysis. 4th edition. Upper Saddle River, New Jersey: Prentice-Hall IncGoogle Scholar