Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:45:02.176Z Has data issue: false hasContentIssue false

REPRODUCTION AND POPULATION GROWTH OF THE PEA APHID (HOMOPTERA: APHIDIDAE) UNDER LABORATORY AND FIELD CONDITIONS

Published online by Cambridge University Press:  31 May 2012

A. Campbell
Affiliation:
Pestology Centre, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia
M. Mackauer
Affiliation:
Pestology Centre, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia

Abstract

The effect of temperature on the age-specific fecundity and the survival of apterous and alate virginoparous pea aphid, Acyrthosiphon pisum (Harris), from Kamloops, B.C., was measured. Demographic statistics were estimated for 10.3°, 14.8°, 19.7°, 26.1°, and 27.8°C constant and for fluctuating field temperatures. On a 24-h-day time-scale, temperature and longevity were inversely related in both morphs; total fecundity was highest at average and low constant temperatures. On a physiological time-scale, the intrinsic rate of increase (rm) was insensitive to changes in constant temperature in the range between 10° and 20°C; temperatures above 25°C were detrimental to aphid population growth and survival. Alate virginoparae generally had a longer pre-reproductive period and achieved a lower mean total fecundity than apterae maintained under identical conditions. The usefulness of laboratory measurements for the prediction of population growth under variable field temperatures is discussed. Differences in the reproductive patterns of alate and apterous pea aphids are considered in the context of the r- and K-hypothesis of selection.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H. G. and Birch, L. C.. 1954. The distribution and abundance of animals. Univ. of Chicago Press, Chicago and London. xv + 782 pp.Google Scholar
Burns, M. 1972. Effect of flight on the production of alatae by the vetch aphid, Megoura viciae. Entomologia exp. appl. 15: 319323.CrossRefGoogle Scholar
Bursell, E. 1974. Environmental aspects — temperature, pp. 1–41. In Rockstein, M. (Ed.), The physiology of Insecta, 2nd ed., Vol. 2. Academic Press, New York and London. xviii + 568 pp.Google Scholar
Campbell, A. and Mackauer, M.. 1975. Thermal constants for development of the pea aphid (Homoptera: Aphididae) and some of its parasites. Can. Ent. 107: 419423.CrossRefGoogle Scholar
Fraser, B. D. 1972 a. Life tables and intrinsic rates of increase of apterous black bean aphids and pea aphids, on broad bean (Homoptera: Aphididae). Can. Ent. 104: 17171722.CrossRefGoogle Scholar
Fraser, B. D. 1972 b. Population dynamics and recognition of biotypes in the pea aphid (Homoptera: Aphididae). Can. Ent. 104: 17291733.CrossRefGoogle Scholar
Harrison, J. R. and Barlow, C. A.. 1972. Population-growth of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), after exposure to extreme temperatures. Ann. ent. Soc. Am. 65: 10111015.CrossRefGoogle Scholar
Hille Ris Lambers, D. 1966. Polymorphism in Aphididae. A. Rev. Ent. 11: 4778.CrossRefGoogle Scholar
Hughes, R. D. 1963. Population dynamics of the cabbage aphid, Brevicoryne brassicae (L.). J. Anim. Ecol. 32: 393424.CrossRefGoogle Scholar
Hughes, R. D. 1973. Computer simulations of aphid populations, pp. 85–91. In Lowe, A. D. (Ed.), Perspectives in aphid biology. Bull. ent. Soc. N.Z. 2. 123 pp.Google Scholar
Hughes, R. D. and Gilbert, N.. 1968. A model of an aphid population—a general statement. J. Anim. Ecol. 37: 553563.CrossRefGoogle Scholar
Isaak, A., Sorensen, E. L., and Ortman, E. E.. 1963. Influence of temperature and humidity on resistance in alfalfa to the spotted alfalfa aphid and pea aphid. J. econ. Ent. 56: 5357.CrossRefGoogle Scholar
Kenten, J. 1955. The effect of photoperiod and temperature on reproduction in Acyrthosiphon pisum Harris and on the forms produced. Bull. ent. Res. 46: 599624.CrossRefGoogle Scholar
Lees, A. D. 1959. The role of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton—I. The influence of these factors on apterous virginoparae and their progeny. J. Insect Physiol. 3: 92117.CrossRefGoogle Scholar
MacArthur, R. and Wilson, E. O.. 1967. The theory of island biogeography. Princeton Univ. Press. 203 pp.Google Scholar
Mackauer, M.The population growth of the pea aphid biotype R1 on broad bean and pea (Homoptera: Aphididae). Z. angew. Ent. 74: 343351.CrossRefGoogle Scholar
Mackauer, M. and Bisdee, H. E.. 1965. Two simple devices for rearing aphids. J. econ. Ent. 58: 365366.CrossRefGoogle Scholar
Mackay, P. A. and Wellington, W. G.. 1975. A comparison of the reproductive patterns of apterous and alate virginoparous Acyrthosiphon pisum (Homoptera: Aphididae). Can. Ent. 107: 11611166.CrossRefGoogle Scholar
Markkula, M. and Roukka, K.. 1970. Resistance of plants to pea aphid Acyrthosiphon pisum Harris (Hom., Aphididae). I. Fecundity of the biotypes on different host plants. Ann. Agric. Fenn. 9: 127132.Google Scholar
Markkula, M. and Roukka, K.. 1971. Resistance of plants to the pea aphid Acyrthosiphon pisum Harris (Hom., Aphididae). III. Fecundity on different pea varieties. Ann. Agric. Fenn. 10: 3337.Google Scholar
Messenger, P. S. 1964. The influence of rhythmically fluctuating temperatures on the development and reproduction of the spotted alfalfa aphid, Therioaphis maculata. J. econ. Ent. 57: 7176.CrossRefGoogle Scholar
Müller, F. P. und Hubert-Dahl, M. L.. 1973. Wirtspflanzen und Überwinterung eines an Erbse lebenden Biotyps von Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Dt. ent. Z. (N.F.) 20: 321328.CrossRefGoogle Scholar
Murdie, G. 1969 a. Some causes of size variation in the pea aphid, Acyrthosiphon pisum Harris. Trans. R. ent. Soc. Lond. 121: 423442.CrossRefGoogle Scholar
Murdie, G. 1969 b. The biological consequences of decreased size caused by crowding or rearing temperatures in apterae of the pea aphid, Acyrthosiphon pisum Harris. Trans. R. ent. Soc. Lond. 121: 443455.CrossRefGoogle Scholar
Shaw, M. J. P. 1970 a. Effects of population density on alienicolae of Aphis fabae Scop. II. The effects of crowding on the expression of migratory urge among alatae in the laboratory. Ann. appl. Biol. 65: 197203.CrossRefGoogle Scholar
Shaw, M. J. P. 1970 b. Effects of population density on alienicolae of Aphis fabae Scop. III. The effects of isolation on the development of form and behaviour of alatae in a laboratory clone. Ann. appl. Biol. 65: 205212.CrossRefGoogle Scholar
Siddiqui, W. H., Barlow, C. A., and Randolph, P. A.. 1973. Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Can. Ent. 105: 145156.CrossRefGoogle Scholar
Sutherland, O. R. W. 1970. An intrinsic factor influencing alate production by two strains of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 16: 13491354.CrossRefGoogle Scholar