Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T07:53:50.593Z Has data issue: false hasContentIssue false

RELATIVE POTENCIES OF 50 ISOLATES OF BACILLUS THURINGIENSIS FOR LARVAE OF THE SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

O. N. Morris
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, Sault Ste. Marie, Ontario P6A 5M7
A. Moore
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, Sault Ste. Marie, Ontario P6A 5M7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fifty Bacillus thuringiensis (B.t.) isolates representing K-1, galleriae, K-73, thuringiensis, aizawai, dendrolimus, tolworthi, kenyae, darmstadiensis, alesti, and entomocidus crystal antigen types were bioassayed against fifth-instar spruce budworm, Choristoneura fumiferana (Clem.), larvae. In addition, larvae reared on diet with and without aureomycin were tested for their susceptibility to B.t. The data indicated no significant differences in susceptibility to B.t. among insects reared on aureomycin or on aureomycin-free diet, but differences were evident in larval growth and mortality among untreated controls. None of the 50 isolates bioassayed was any more toxic to the budworm than is the strain used at present in commercial preparations of B. thuringiensis.

Résumé

Cinquante isolats de Bacillus thuringiensis (B.t.) représentant les types antigéniques à l'état cristallisé K-1, galleriae, K-73, thuringiensis, aizawai, dendrolimus, tolworthi, kenyae, darmstadiensis, alesti et entomocidus ont été testés contre des larves au cinquième stade de la tordeuse des bourgeons de l'épinette, Choristoneura fumiferana (Clem.). De plus, la vulnérabilité envers B.t. des larves élevées avec une alimentation additionnée ou exempte d'auréomycine a été examinée. Les résultats n'indiquent aucune différence quant à la vulnérabilité des larves alimentées avec ou sans auréomycine, mais des différences sont apparues au niveau de la croissance et de la mortalité chez les larves témoins non traitées. Aucun des 50 isolats testés n'était plus toxique pour la tordeuse que la variété présentement employée dans des préparations commerciales.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

References

Beegle, C. C., Lewis, L. C., Lynch, R. E., and Martinez, A. J.. 1981. Interaction of larval age and antibiotic on the susceptibility of three insect species to Bacillus thuringiensis. J. invert. Path. 37: 143153.CrossRefGoogle Scholar
Burgerjon, A. and Biache, G.. 1967. Contribution to the studies of the activity spectra of the strains of Bacillus thuringiensis Berliner. “Insect Pathology and Microbial Control”. pp. 294296in Proc. Intern. Colloq. Insect Pathol. and Microbial Control, Wageningen, The Netherlands, 1966.Google Scholar
Burgerjon, A. and Martouret, D.. 1971. Determination and significance of the lost spectrum of Bacillus thuringiensis. pp. 305–325 in Burges, H. D. and Hussey, N. W. (Eds.), Microbial Control of Insects and Mites. Academic Press, N.Y.861 pp.Google Scholar
Burges, H. D. and Thompson, E. M.. 1971. Standardization and assay of microbial insecticides. pp. 591–622 in Burges, H. D. and Hussey, N. W. (Eds.), Microbial Control of Insects and Mites. Academic Press, N.Y.861 pp.Google Scholar
Cabral, M. T. 1973. Activity of nine Bacillus thuringiensis strains on Lymantria dispar compared. Zastita Bilja 24(124/125): 197203.Google Scholar
Drake, E. L. and McEwan, F. L.. 1959. Pathology of the nuclear polyhedrosis of a nuclear polyhedrosis of the cabbage looper, Trichoplusia ni (Hübner). J. invert. Path. 1: 281293.Google Scholar
Dulmage, H. T. 1973. Assay and standardization of microbial insecticides. Ann. N.Y. Acad. Sci. 217: 187199.CrossRefGoogle ScholarPubMed
Dulmage, H. T. 1981. Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. pp. 193–222 in Burges, H. D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, N.Y.949 pp.Google Scholar
Dulmage, H. T., Martinez, A. J., and Penna, T.. 1976. Bioassay of Bacillus thuringiensis (Berliner) δ-endotoxin using the tobacco budworm. Tech. Bull. U.S. Dep. Agric. 1528.Google Scholar
Evans, H. F. 1981. Quantitative assessment of the relationship between dosage and response of the nuclear polyhedrosis virus of Mamestra brassicae. J. invert. Path. 37: 101109.CrossRefGoogle Scholar
Finney, D. J. 1964. Probit Analysis. Cambridge University Press. 318 pp.Google Scholar
Grisdale, D. 1970. An improved laboratory method for rearing large numbers of spruce budworm, C. fumiferana (Lepidoptera: Tortricidae). Can. Ent. 102: 11111117.CrossRefGoogle Scholar
Heimpel, A. M. 1955. Investigations of the mode of action of strains of Bacillus cereus FR. and FR. pathogenic for the larch sawfly, Pristiphora erichsonii (Htg.). Can. J. Zool. 33: 311326.CrossRefGoogle Scholar
Ignoffo, C. M. 1963. Sensitivity spectrum of Bacillus thuringiensis var. thuringiensis Berliner to antibiotics, sulfonamides, and other substances. J. Insect Path. 5: 395397.Google Scholar
Ignoffo, C. M., Garcia, C., and Couch, T. L.. 1977. Effect of antibiotics on the insecticidal activity of Bacillus thuringiensis. J. invert. Path. 30: 277278.CrossRefGoogle Scholar
Magnoler, A. 1975. Bioassay of nuclear polyhedrosis virus against larval instars of Malacosoma neustria. J. invert. Path. 25: 343345.CrossRefGoogle Scholar
Martignioni, M. E. and Schmidt, P.. 1961. Studies on the resistance to virus infections in natural populations of Lepidoptera. J. invert. Path. 3: 6274.Google Scholar
Moore, A. and Morris, O. N.. 1982. An improved technique for dosing larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), with measured quantities of Bacillus thuringiensis var. kurstaki. Can. Ent. 114: 8991.CrossRefGoogle Scholar
Morris, O. N. 1962. Quantitative infectivity studies on the nuclear polyhedrosis of the western oak looper, Lambdina fiscellaria somniaria (Hulst). J. invert. Path. 4: 207215.Google Scholar
Morris, O. N. and McErlane, B.. 1975. Studies on the protection of insect pathogens from sunlight inactivation. I. Preliminary laboratory test. Can. For. Serv. Rep. CC-X-112. 13 pp.Google Scholar
Nishiitsutsuji-Uwo, J. and Endo, Y.. 1980. Mode of action of Bacillus thuringiensis δ-endotoxin: relative roles of spores and crystals in toxicity to Pieris, Lymantria and Ephestia larvae. Appl. Ent. Zool. 15: 416424.CrossRefGoogle Scholar
Odindo, M. O. 1981. Dosage-mortality and time-mortality responses of the armyworm Spodoptera exempta to a nuclear polyhedrosis virus. J. invert. Path. 38: 251255.CrossRefGoogle Scholar
Peach, M. K. III, Allen, G. E., and Brazzel, G. R.. 1969. A technique for confining insects to leaf surfaces and its importance in the bioassay of pathogens. J. econ. Ent. 62: 12271228.CrossRefGoogle Scholar
Ridet, J. M. 1973. Etude de la sensibilité de Lymantria dispar L. au complexe “Crystaux-spores” de Bacillus thuringiensis Berliner. Zastita Bilja 24(124/125): 205269.Google Scholar
Smirnoff, W. A. 1965. Comparative tests of various species of Bacillus “cereus group” on larvae of Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). J. invert. Path. 7: 266269.CrossRefGoogle Scholar
Sommerville, H. J., Tanada, Y., and Omi, E. M.. 1970. Lethal effect of purified spore and crystalline endotoxin preparations of Bacillus thuringiensis on several lepidopterous insects. J. invert. Path. 16: 241248.CrossRefGoogle Scholar
Yamvrias, C. and Angus, T. A.. 1970. The comparative pathogenicity of some Bacillus thuringiensis varieties for larvae of the spruce budworm, Choristoneura fumiferana. J. invert. Path. 15: 9299.CrossRefGoogle Scholar