Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T23:35:10.743Z Has data issue: false hasContentIssue false

RELATIVE FIELD EFFICACIES OF SUMITHION 20% FLOWABLE AND SUMITHION TECHNICAL FORMULATIONS AGAINST SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (LEPIDOPTERA: TORTRICIDAE)

Published online by Cambridge University Press:  31 May 2012

B.L. Cadogan
Affiliation:
Forest Pest Management Institute, Canadian Forestry Service, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two Sumithion® formulations were sprayed aerially to compare their effectiveness in controlling spruce budworm, Choristoneura fumiferana (Clemens), in balsam fir, Abies balsamea (L.) Mill. Sumithion 20% flowable, a new formulation, and Sumithion technical were applied twice at 210 g AI (in 1.5 L of spray mix)/ha using a Cessna 188 Agtruck equipped with four Micronair atomizers. More than 95% of the technical and <45% of the Sumithion flowable spray droplets were <50 μm in diameter. Larval reduction ranged from 67 to 84% in the Sumithion flowable plots, from 52 to 55% in the Sumithion technical plots, and from 28 to 38% in the untreated plots. Postspray residual populations averaged 4.1, 6.2, and 10.3 larvae per 46-cm branch in the flowable, technical, and untreated blocks, respectively. Defoliation in the Sumithion flowable block averaged 18.5% and was not significantly different from the technical block but both were significantly less (α = 0.05) than that in the untreated block, which averaged 46.2%. The results suggest that Sumithion 20% flowable was more efficacious in controlling spruce budworm than Sumithion technical insecticide.

Résumé

Deux préparations de Sumithion® ont été pulvérisées par air afin de comparer leur efficacité de répression de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clemens) sur la sapin baumier, Abies balsamea (L.) Mill. Le “Sumithion 20% flowable”, une nouvelle préparation, et le “Sumithion technical” ont été appliqués deux fois à raison de 210 g IA (dans 1.5 L de mélange)/ha avec un Cessna 188 Agtruck équipé de quatre buses Micronair. Plus de 95% des gouttelettes du “Sumithion technical” et <45% de celles du “Sumithion 20% flowable” avaient un diamètre <50 μm. Le réduction des larves a varié de 67 à 84% dans les parcelles traitées au “Sumithion 20% flowable”, de 52 à 55% dans celles traitées au “Sumithion technical”, et de 28 à 38% dans les parcelles témoins. Les populations larvaires post-traitement dans les mêmes parcelles étaient de 4,1, 6,2 et 10,3 larves/branche de 46 cm, respectivement. La défoliaison moyenne dans le bloc “Sumithion 20% flowable” atteignait 18,5%, ne différant pas significativement (α = 0,05) de celle du bloc témoin qui était de 46,2%. Ces résultats indiquent que le “Sumithion 20% flowable” est plus efficace pour la répression de la tordeuse que la préparation “Sumithion technical”.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Barry, J.W., Ciesla, W.M., Tysowsky, M. Jr., and Ekblad, R.B.. 1977. Impaction of insecticide particles on Western spruce budworm and Douglas-fir needles. J. econ. Ent. 70: 387388.CrossRefGoogle Scholar
Cadogan, B.L., Zylstra, B.F., deGroot, P., and Nystrom, C.. 1984. The efficacy of aerially applied Matacil to control spruce budworm Choristoneura fumiferana (Clem.) in Bathurst, New Brunswick. Can. For. Serv., For. Pest Manage. Inst. Inf. Rep. FPM-X-64. 33 pp.Google Scholar
Dixon, W.J. (Ed.). 1983. BMDP statistical software. University of Calif. Press, Berkeley, California.Google Scholar
Fettes, J.J. 1950. Investigations of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario. For. Insect Lab. Sault Ste. Marie, Annu. Tech. Rept. 4: 163401.Google Scholar
Haliburton, W. 1978. A comparison of empirical equations used to approximate the drop/stain diameter relationship of a volatile oil-based spray fluid on Kromekote paper. Can. For. Serv. For. Pest Manage. Inst. Inf. Rept. FPM-X-8. 16 pp.Google Scholar
Himel, C.M., and Moore, A.D.. 1967. Spruce budworm mortality as a function of aerial spray droplet size. Science 156: 12501251.Google Scholar
Joyce, R.V. 1969. Operational frontiers. pp. 6672in Proc. 4th Int. Agric. Aviat. Congr. (Kingston, 1969).Google Scholar
Martineau, R., and Benoit, P.. 1973. A sampling technique for estimating numerical trends in larval populations of insect defoliators on conifers. II. Modification and operational use of the technique for extensive sampling of spruce budworm populations in Quebec. Phytoprotection 54(1): 2331.Google Scholar
Nigam, P.C. 1975. Chemical Insecticides. pp. 8–24 in Prebble, M.L. (Ed.), Aerial Control of Forest Insects in Canada. Can. For. Serv., Ottawa. 330 pp.Google Scholar
Randall, A.P. 1980. A simple device for collecting aerial spray deposits from calibration trials and spray operations. Can. For. Serv. Bi-mon. Res. Notes 36(5): 23.Google Scholar
Roberts, J.R., Greenhalgh, R., and Marshall, W.K. (Eds.). 1977. Proceedings of a symposium on fenitrothion: long term effects of its use in forest ecosystems. National Res. Council Can. Publ. NRCC/CNRC 16073. 614 pp.Google Scholar
Sanders, C.J. 1980. A summary of current techniques used for sampling spruce budworm populations and estimating defoliation in eastern Canada. Can. For. Serv., Great Lakes For. Res. Centre Inf. Rept. O-X-306. 33 pp.Google Scholar
Spillman, J.J. 1976. Optimum droplet sizes for spraying against flying targets. Agric. Aviat. 17: 2832.Google Scholar