Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T11:04:31.201Z Has data issue: false hasContentIssue false

RELATIONSHIPS BETWEEN ATTACK RATES AND SURVIVAL OF WESTERN SPRUCE BUDWORM, CHORISTONEURA OCCIDENTALIS FREEMAN (LEPIDOPTERA: TORTRICIDAE), AND BUD DEVELOPMENT OF DOUGLAS-FIR, PSEUDOTSUGA MENZIESII (MIRB.) FRANCO

Published online by Cambridge University Press:  31 May 2012

Roy F. Shepherd
Affiliation:
Forestry Canada, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5

Abstract

Individual larvae of western spruce budworm (Choristoneura occidentalis Freeman) were observed from overwintering emergence to pupation at six locations spread over a wide range of altitudes and thus climate. A weekly census of 100 lower-crown buds per plot indicated large differences in rates of bud development and larval survival among locations.

Emerging second-instar larvae attempted to mine swelling buds of Douglas-fir. If the buds were hard and tight, larvae mined 1-year-old needles until penetrable buds were available. Larvae dispersed over the crowns with only one larva becoming established in each bud; thus, many early-emerging and surplus larvae could not find suitable feeding sites and disappeared. Within the protective bud, survival was high. After buds flushed and larvae became exposed, densities dropped, probably due to increased predation and decreased food quality. Correlations indicated a close association between larval survival for the exposed period between bud flush and pupation, and overall larval survival.

Douglas-fir trees responded to initial bud removal, but not to needle removal, by inducing latent buds in the axils of needles to grow into active vegetative buds ready to develop and flush the next spring. The number of these new vegetative buds formed was greatest when the initial buds were removed early in the season before flush, and decreased thereafter. Trees with vigorous crowns had the greatest response to defoliation by inducing the largest number of latent buds into becoming active vegetative buds; these were found mainly on the 2- and 3-year-old internodes.

Résumé

On a observé des chenilles individuelles de la tordeuse occidentale de l’épinette (Choristoneura occidentalis Freeman), depuis l’émergence post-hivernale jusqu’à la pupaison, dans six endroits choisis de manière à couvrir une gamme étendue d’altitudes et, par conséquent, de climats. Un recensement hebdomadaire de 100 bourgeons situés dans la partie inférieure de la couronne par parcelle a révélé des écarts importants en ce qui a trait au taux de développement des bourgeons et à la survie des chenilles d’un endroit à l’autre.Les jeunes chenilles du deuxième stade larvaire ont essayé de miner les bourgeons turgescents du sapin de Douglas. Lorsque les bourgeons étaient durs et bien fermés, les chenilles se sont attaquées aux vieilles aiguilles de 1 an en attendant de pouvoir pénétrer dans les bourgeons.

Les chenilles se sont dispersées dans toute la couronne et on ne comptait qu’une seule chenille par bourgeon; aussi, bon nombre de larves précoces et excédentaires n’on pu trouver d’endroits appropriés pour s’alimenter et ont disparu. Le taux de survie a été élevé chez les chenilles abritées à l’intérieur des bourgeons. Après le débourrement et la sortie des chenilles à l’air libre, la densité des populations a chuté, probablement en raison de l’accroissement de la prédation et d’une diminution de la qualité des aliments. Les corrélations établies ont indiqué que la survie générale des chenilles était étroitement liée à leur survie durant la période de vie à l’air libre, soit entre le débourrement et la pupaison.

Les sapins de Douglas ont réagi à la disparition des bourgeons initiaux, mais pas à la disparition des aiguilles, en induisant les bourgeons latents présents à l’aisselle des aiguilles à se transformer en bougeons végétatifs actifs prêts à croître et à débourrer le printemps suivant. Le nombre de ces nouveaux bourgeons végétatifs a été plus élevé lorsque les bourgeons initiaux ont été éliminés tôt avant le débourrement et il a diminué par la suite. La réaction la plus marquée à la défoliation a été observée chez les arbres dotés d’une couronne vigoureuse chez lesquels on a constaté le plus grand nombre de bourgeons latents se transformant en bourgeons végétatifs actifs; ces derniers se trouvaient principalement sur les entrenoeuds âgés de 2 à 3 ans.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfaro, R.I., Taylor, S.P., Wegwitz, E., and Brown, R.G.. 1987. Douglas-fir tussock moth damage in British Columbia. For. Chron. 63: 351355.Google Scholar
Alfaro, R.I., Van Sickle, G.A., Thomson, A.J., and Wegwitz, E.. 1982. Tree mortality and radial growth losses caused by the western spruce budworm in a Douglas-fir stand in British Columbia. Can. J. For. Res. 12: 780787.Google Scholar
Allen, G.S., and Owens, J.N.. 1972. The life history of Douglas-fir. Environment Canada, Canadian Forestry Service, Ottawa. 139 pp.Google Scholar
Baskerville, G.L., and Emin, P.. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50: 514517.Google Scholar
Batzer, H.O. 1973. Defoliation by the spruce budworm stimulates epicormic shoots on balsam fir. Environ. Ent. 2: 727728.Google Scholar
Beckwith, R.C., and Burnell, D.G.. 1982. Spring larval dispersal of the western spruce budworm (Lepidoptera: Tortricidae) in north-central Washington. Environ. Ent. 11: 828832.Google Scholar
Blum, B.M. 1988. Variation in phenology of bud flushing in white and red spruce. Can. J. For. Res. 18: 315319.Google Scholar
Campbell, R.W., and Torgersen, T.R.. 1983. Compensatory mortality in defoliator population dynamics. Environ. Ent. 12: 630632.Google Scholar
Carolin, V.M., and Coulter, W.K.. 1972. Sampling populations of western spruce budworm and predicting defoliation on Douglas-fir in eastern Oregon. USDA For. Serv. Res. Pap. PNW 149. 38 pp.Google Scholar
Cerezke, H.F. 1977. Variation in shoot and needle growth patterns on 46-cm branch tips of healthy white spruce. Can. For. Serv. Bi-mon. Res. Notes 33: 1819.Google Scholar
Cleary, B.D., and Waring, R.H.. 1969. Temperature: Collection of data and its analysis for the interpretation of plant growth and distribution. Can. J. Bot. 47: 167173.Google Scholar
Eidt, D.C., and Cameron, M.D.. 1971. Delayed budbreak and spruce budworm survival. Can. For. Ser. Bi-mon. Res. Notes 27: 2829.Google Scholar
Eidt, D.C., and Little, C.H.A.. 1970. Insect control through induced host-insect asynchrony: A progress report. J. econ. Ent. 63: 19661967.Google Scholar
Furniss, R.L., and Carolin, V.M.. 1977. Western forest insects. USDA For. Serv. Misc. Publ. 1339. 654 pp.Google Scholar
Griffith, B.G. 1968. Phenology, growth, and flower and cone production of 154 Douglas-fir trees on the university research forest as influenced by climate and fertilizer, 1957–1967. Univ. British Columbia, Fac. For. Bull. 6. 70 pp.Google Scholar
MacRae, C. 1957. Some observations of Tortrix defoliation. Quart. J. For. 51: 332333.Google Scholar
McDonald, D.I. 1979. Resistance of Douglas-fir to western spruce budworm: Results of a preliminary progeny test. USDA For. Serv. Res. Note INT. 264. 7 pp.Google Scholar
McGugan, B.M. 1954. Needle-mining habits and larval instars of the spruce budworm. Can. Ent. 86: 439454.Google Scholar
McKnight, M.E. 1968. A literature review of the spruce, western, and 2-year-cycle budworms Choristoneura fumiferana, C. occidentalis and C. biennis (Lepidoptera: Tortricidae). USDA For. Serv. Res. Pap. RM-44. 35 pp.Google Scholar
McKnight, M.E. 1969. Distribution of hibernating larvae of the western budworm, Choristoneura occidentalis, on Douglas-fir in Colorado. J. econ. Ent. 62: 139142.Google Scholar
McKnight, M.E. 1971. Natural mortality of the western budworm, Choristoneura occidentalis, in Colorado. USDA For. Serv. Res. Pap. RM-81. 12 pp.Google Scholar
Morris, R.F. 1963. The dynamics of epidemic spruce budworm populations. Mem. ent. Soc. Can. 31: 332 pp.Google Scholar
Morris, W.G., Silen, R.R., and Irgens-Moller, H.. 1957. Consistency of bud bursting in Douglas-fir. J. For. 55: 208210.Google Scholar
Schütte, F. 1957. Untersuchungen über die Populations dynamik des Eichenwicklers (Tortrix viridana L.). Z. angew. Ent. 40: 136.Google Scholar
Shepherd, R.F. 1958. Factors controlling the internal temperatures of spruce budworm larvae, Choristoneura fumiferana (Clem.). Can. J. Zool. 36: 780786.Google Scholar
Shepherd, R.F. 1983. A technique to study phenological interactions between Douglas-fir buds and emerging second instar western spruce budworm. In Talerico, R.L., and Montgomery, M. (Eds.), Proceedings of a Symposium on Forest Defoliator–Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA For. Serv. Gen. Tech. Rep. NE-85. 141 pp.Google Scholar
Shepherd, R.F. 1985. A theory on the effects of diverse host-climatic environments in British Columbia on the dynamics of western spruce budworm. In Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Proceedings of the CANUSA Spruce Budworm Research Symposium: Recent Advances in Spruce Budworm Research. Sept. 16–20, 1984, Bangor, Maine. Canadian Forestry Service. 527 pp.Google Scholar
Silen, R.R. 1978. Genetics of Douglas-fir. USDA For. Serv. Res. Pap. WO-35. 34 pp.Google Scholar
Silver, G.T. 1960. Notes on a spruce budworm infestation in British Columbia. For. Chron. 36: 362374.Google Scholar
Thomas, A.W. 1983. Foliage consumption by 6th instar spruce budworm larvae, Choristoneura fumiferana (Clem.) feeding on balsam fir and white spruce. In Talerico, R.L., and Montgomery, M. (Eds.), Proceedings of a Symposium on Forest Defoliator–Host Interactions: A Comparison Between Gypsy Moth and Spruce Budworms. USDA For. Serv. Gen. Tech. Rep. NE-85. 141 pp.Google Scholar
Thomas, A.W. 1987. The effect of age of current-year shoots of Picea glauca on survival, development time and feeding efficiency of 6th-instar larvae of Choristoneura fumiferana. Entomologia exp. appl. 43: 251260.Google Scholar
Thomson, A.J., Shepherd, R.F., Harris, J.W.E., and Silversides, R.H.. 1984. Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia. Can. Ent. 116: 375381.Google Scholar
Varley, G.C., and Gradwell, G.R.. 1960. Key factors in population studies. J. Anim. Ecol. 29: 399401.Google Scholar
Volney, W.J.A., Waters, W.E., Akers, R.P., and Liebhold, A.M.. 1983. Variation in spring emergence patterns among western Choristoneura spp. (Lepidoptera: Tortricidae) populations in southern Oregon. Can. Ent. 115: 199209.Google Scholar
Wellington, W.G., Fettes, J.J., Turner, K.B., and Belyea, P.M.. 1950. Physical and biological indicators of the development of outbreaks of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. J. Res. D. 28: 308311.Google Scholar
Witter, J.A., and Waisanen, L.A.. 1978. The effect of differential flushing times among trembling aspen clones on Tortricid caterpillar populations. Environ. Ent. 7: 139143.Google Scholar