Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T07:32:04.276Z Has data issue: false hasContentIssue false

Relation entre sources trophiques et capacité de survie chez Macrolophus pygmaeus (Hemiptera : Miridae)

Published online by Cambridge University Press:  27 November 2013

Faten Hamdi
Affiliation:
IRD, Centre de Biologie pour la Gestion des Populations, Campus International de Baillarguet CS 30 016, 34988 Montferrier/Lez cedex, France
Olivier Bonato*
Affiliation:
IRD, Centre de Biologie pour la Gestion des Populations, Campus International de Baillarguet CS 30 016, 34988 Montferrier/Lez cedex, France IRD, Centre d’Écologie Fonctionnelle et Évolutive, Laboratoire de Zoogéographie, Université Paul Valéry Montpellier III, route de Mende 34199 Montpellier cedex 5
*
1Corresponding author (e-mail: [email protected]).

Résumé

L'influence de différents régimes trophiques sur la capacité de survie et la longévité d'une espèce zoophytophage (Macrolophus pygmaeus Rambur ; Hemiptera : Miridae) a été étudiée. Les différentes sources trophiques, présentées seules ou en combinaison étaient de l'eau libre, une plante (tabac), et une proie (œufs d’Ephestia kuehniella Zeller ; Lepidoptera : Pyralidae). Le régime trophique a fortement influencé la longévité et la survie des adultes quel que soit leur sexe. L'eau, libre ou apportée par la plante, est une ressource indispensable à la survie. La plante, comparée à l'eau libre, n'a pas eu d'effet significatif sur la longévité mais a influencé positivement la survie. On a observé un effet certain de la présence simultanée de l'eau et des œufs.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Gilles Boiteau

References

Références

Albajes, R.Alomar, O. 1999. Current and potential use of polyphagous predators. In Integrated pest and disease management in greenhouse crops Sous la direction de R. Albajes, M.L. Gullino, J.C. van Lenteren, and Y. Elad. Kluwer Academic Publishers, Dordrecht, Pays-Bas. Pp. 265275.Google Scholar
Albajes, R., Sarasua, M.J., Avilla, J., Arno, J., Gabarra, R. 2003. Integrated pest management in the Mediterranean Region: the case of Catalonia, Spain. In Integrated pest management in the global arena. Sous la direction de K.M. Maredia, D. Dakouo, and D. Mota-Sánchez. CABI Publishing, Wallingford, Royaume-Uni. Pp. 341355.CrossRefGoogle Scholar
Alomar, O., Goula, M., Albajes, R. 1994. Mirid bugs for biological control: identification, survey in non-cultivated winter plants, and colonization of tomato fields. International Organisation for Biological and Integrative Control/West Palaearctic Regional Section Bulletin, 17: 217223.Google Scholar
Alomar, O., Goula, M., Albajes, R. 2002. Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. In The ecology of field margins in European farming systems. Sous la direction de E.J.P. Marshall. Agriculture, Ecosystems & Environment, 89: 105–116.Google Scholar
Arno, J., Gabarra, R., Liu, T.X., Simmons, A.M., Gerling, D. 2010. Natural enemies of Bemisia tabaci: predators and parasitoids. In Bemisia bionomics and management of a global pest. Sous la direction de P.A. Stansly et S.E. Naranjo. Springer, Dordrecht, Pays-Bas. Pp. 385421.Google Scholar
Arno, J., Sorribas, R., Prat, M., Matas, M., Pozo, C., Rodríguez, D., et al. 2009. Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. International Organisation for Biological and Integrative Control/West Palaearctic Regional Section Bulletin, 49: 203208.Google Scholar
Castané, C., Alomar, O., Goula, M., Gabarra, R. 2004. Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control, 30: 591597.Google Scholar
Castané, C., Arno, J., Gabarra, R., Alomar, O. 2011. Plant damage to vegetable crops by zoophytophagous mired predators. Biological Control, 59: 2229.Google Scholar
Castané, C.Zapata, R. 2005. Rearing the predatory bug Macrolophus caliginosus on meat based diet. Biological Control, 34: 6672.Google Scholar
Cohen, A.C.Debolt, J.W. 1983. Rearing Geocoris punctipes on insect eggs. Southwestern Entomologist, 8: 6164.Google Scholar
Gabarra, R., Alomar, O., Castané, C., Goula, M., Albajes, R. 2004. Movement of greenhouse whitefly and its predators between in- and outside of Mediterranean greenhouses. Agriculture, Ecosystems and Environment, 102: 341348.Google Scholar
Gillespie, D.R.McGregor, R.R. 2000. The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecological Entomology, 25: 380386.Google Scholar
Hamdi, F., Chadoeuf, J., Chermiti, B., Bonato, O. 2013. Evidence of cannibalism in Macrolophus pygmeaus a natural enemy of whiteflies. Journal of Insect Behavior, 26: 614621. doi: 10.1007/s10905-013-9379-3.Google Scholar
Ingegno, L.B., Pansa, M.G., Tavella, L. 2011. Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biological Control, 58: 174181.Google Scholar
Iriarte, J.Castané, C. 2001. Artificial rearing of Dicyphus tamaninii (Heteroptera: Miridae) on a meat-based diet. Biological Control, 22: 98102.CrossRefGoogle Scholar
Lucas, E.Alomar, O. 2001. Macrolophus caliginosus (Wagner) as an intraguild prey for the zoophytophagous Dicyphus tamaninii Wagner (Heteroptera: Miridae). Biological Control, 20: 147152.Google Scholar
Lucas, E., Fréchette, B., Alomar, O. 2009. Resource quality, resource availability, and intraguild predation among omnivorous mirids. Biocontrol Science and Technology, 19: 555572.Google Scholar
Lykouressis, D., Giatropoulos, A., Perdikis, D., Favas, C. 2008. Assessing the suitability of noncultivated plants and associated insect prey as food sources for the omnivorous predator Macrolophus pygmaeus (Hemiptera: Miridae). Biological Control, 44: 142148.Google Scholar
Lykouressis, D., Perdikis, D., Michalaki, M.P. 2001. Nymphal development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) on two eggplant varieties as effected by temperature and presence/absence of prey. BioControl, 20: 222227.Google Scholar
Margaritopoulos, J.T., Tsitsipis, J.A., Perdikis, D.C. 2003. Biological characteristics of the mirids Macrolophus costalis and Macrolophus pygmaeus preying on the tobacco form of Myzus persicae (Hemiptera : Aphididae). Bulletin of Entomological Research, 93: 3945.Google Scholar
Naranjo, S.E.Gibson, R.L. 1996. Phytophagy in predaceous Heteroptera: effects on life history and population dynamics. In Zoophytophagous Heteroptera: implications for life history and integrated pest management. Sous la direction de O. Alomar et R.N. Wiedenmann. Entomological Society of America, Lanham, Maryland, États-Unis. Pp. 5793.Google Scholar
Paradise, C.J. 1998. Colonization and development of insects in simulated treehole habitats with distinct resource and pH regimes. Ecoscience, 5: 3945.Google Scholar
Perdikis, D.Lykouressis, D. 1997. Rate of development and mortality of nymphal stages of the predator Macrolophus pygmaeus Rambur feeding on various preys and host plants. International Organisation for Biological and Integrative Control/West Palaearctic Regional Section Bulletin, 20: 241248.Google Scholar
Perdikis, D.Lykouressis, D. 1999. Development and mortality of the nymphal stages of the predatory bug Macrolophus pygmaeus, when maintained at different temperatures and on different host plants. International Organisation for Biological and Integrative Control/West Palaearctic Regional Section Bulletin, 22: 137144.Google Scholar
Perdikis, D.Lykouressis, D. 2000. Effects of various items, host plants, and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biological Control, 17: 5560.Google Scholar
Perdikis, D.Lykouressis, D. 2004. Macrolophus pygmaeus (Hemiptera: Miridae) population parameters and biological characteristics when feeding on eggplant and tomato without prey. Journal of Economic Entomology, 97: 12911298.Google Scholar
Perdikis, D., Margaritopoulos, J.T., Stamatis, C., Mamuris, Z., Lykouressis, D., Tsitsipis, J.A., Pekas, A. 2003. Discrimination of the closely related biocontrol agents Macrolophus melanotoma (Hemiptera: Miridae) and M. pygmaeus using mitochondrial DNA analysis. Bulletin of Entomological Research, 93: 507514.Google Scholar
Pimm, S.L., Lawton, J.H., Cohen, J.L. 1991. Food web patterns and their consequences. Nature, 350: 669674.Google Scholar
Portillo, N., Alomar, O., Wackers, F. 2012. Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): Nutritional redundancy or nutritional benefit? Journal of Insect Physiology, 58: 397401.Google Scholar
Reice, S.R. 1994. Non equilibrium determinants of biological community structure. American Scientist, 82: 424435.Google Scholar
Schoener, T.W. 1989. Food webs from the small to the large. Ecology, 70: 15591589.Google Scholar
Sinia, A., Roitberg, B., McGregor, R.R., Gillespie, D.R. 2004. Prey feeding increases water stress in the omnivorous predator Dicyphus hesperus. Entomologia Experimentalis et Applicata, 110: 243248.Google Scholar
Tavella, L.Goula, M. 2001. Dicyphini collected in horticultural areas of northwestern Italy (Heteroptera Miridae). Bollettino di Zoologia Agraria e di Bachicoltura, 33: 93102.Google Scholar