Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:58:01.745Z Has data issue: false hasContentIssue false

RELATING FEEDING RATES TO SEX AND SIZE IN SIX SPECIES OF GRASSHOPPERS (ORTHOPTERA: ACRIDIDAE)1

Published online by Cambridge University Press:  31 May 2012

Robert G. Holmberg
Affiliation:
Athabasca University, Edmonton, Alberta T5L 2W4
John Michael Hardman
Affiliation:
Research Station, Agriculture Canada, Lethbridge, Alberta T1J 4B1

Abstract

Nymphs and adults of both sexes of six species of grasshoppers, Camnula pellucida, Dissosteira carolina, Melanoplus infantilis, M. sanguinipes, M. packardii and M. bivittatus, were fed wheat seedlings to determine daily feeding rates. The relationships between the feeding rates and five indices of body size were checked with five types of equations — power, parabolic, exponential, linear, and logarithmic. For combined data for all species, the power equation (y = axb) produced the best correlations with the feeding rate being proportional to the 1.56 power of pronotum length, 1.87 of femur length, 1.94 of body length, 0.72 of live weight, and 0.66 of dry weight. The power equation underestimated nymphal feeding and overestimated adult feeding. Better correlations were obtained when separate power equations were used for nymphs and adults. While the b parameters for the nymph equations did not differ significantly from those for the adult equations, the a parameters for nymphs were much larger, reflecting that nymphs ate more relative to their size than adults. For individual species, the parabolic equation (y = a + bx + cx2) was as good or sometimes better than the power equation. Generally, ranking the indices of body size by their coefficients of determination (r2 values) produced the following hierarchy: pronotum length (best), femur length, live weight, dry weight, and body length (worst). However, as the differences between the best and worst indices were minor (usually less than 10%) and as live weight and body length are easy to determine, we recommend the use of either of these two indices for estimating feeding rates.

Résumé

On a déterminé le taux d'alimentation des nymphes et des imagos des deux sexes de six espèces de sauterelles (Camnula pellucida, Dissosteira carolina, Melanoplus infantilis, M. sanguinipes, M. packardii et M. bivittatus) nourris de pousses de blé. On a ensuite vérifié la relation entre le taux d'alimentation et cinq indices de la taille corporelle au moyen de cinq fonctions : puissance, parabolique, exponentielle, linéaire et logarithmique. La fonction puissance (y = axb) donne la meilleur corrélation pour les données de toutes les espèces, le taux d'alimentation étant proportionnel à la longueur du pronotum à la puissance 1.56, à la longueur du fémur à la puissance 1.87, à la longueur du corps à la puissance 1.94, au poids vif à la puissance 0.72 et au poids sec à la puissance 0.66. Cette equation sousestime le taux d'alimentation des nymphes et surestime celui de l'insecte adulte. Ainsi, on obtient de meilleures corrélations en utilisant des équations distinctes pour ces deux stades. Si le paramètre b est pratiquement identique dans les deux équations, le paramètre a est beaucoup plus grand dans celle des nymphes, ces dernières mangeant plus en fonction de leur taille que l'adulte. Chaque espèce prise individuellement, la fonction parabolique (y = a + bx + cx2) donne d'aussi bons, sinon meilleurs résultats que la fonction puissance. En règle générale, le classement des indices de taille selon le coefficient de détermination (valeur r2) est le suivant : longueur du pronotum (meilleur), longueur du fémur, poids vif, poids sec et longueur du corps (pire). Toutefois, puisque la différence entre les deux extrêmes est relativement faible (habituellement moins de 10%), et puisque le poids vif et la taille du corps sont les plus faciles à déterminer, on recommande l'emploi de ces deux indices pour évaluer le taux d'alimentation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beirne, B. P. 1972. Pest insects of annual crops in Canada. IV. Hemiptera-Homoptera. V. Orthoptera. VI. Other groups. Mem. ent. Soc. Can. 85. 75 pp.Google Scholar
Bertalanffy, L. von. 1957. Quantitative laws in metabolism and growth. Quart. Rev. Biol. 32: 217231.Google Scholar
Brody, S. 1945 (reprinted 1964). Bioenergetics and Growth. Hafner, N.Y.Google Scholar
Brooks, A. R. 1958. Acridoidea of southern Alberta, Saskatchewan, and Manitoba (Orthoptera). Can. Ent. Suppl. 9. 92 pp.Google Scholar
Brusven, M. A. 1967. Differentiation, ecology and distribution of immature slant-faced grasshoppers (Acridinae) in Kansas. Tech. Bull. Kans. St. Univ. 149. 59 pp.Google Scholar
Davey, P. M. 1954. Quantities of food eaten by the desert locust, Schistocerca gregaria (Forsk.), in relation to growth. Bull. ent. Res. 45: 539551.Google Scholar
Dunger, W. 1958. Über die Zersetzung der Laubstreu durch die Bodenmakrofauna im Auenwald. Zool. Jb. (Syst.) 86: 139180.Google Scholar
Gangwere, S. K. 1959. Experiments upon the feeding consumption of the grasshopper Melanoplus s. scudderi (Uhler). Mich. Acad. Sci., Arts, Lett. 44: 9396.Google Scholar
Gangwere, S. K. 1972. Host finding and feeding behaviour in the Orthopteroidea, especially as modified by food availability: a review. Rev. Univ. Madrid 21: 106158.Google Scholar
Gere, G. 1956. The examination of the feeding biology and the humificative function of Diplopoda and Isopoda. Acta Biol. Acad. Sci., Hung. 6: 257271.Google Scholar
Hardman, J. M. and Smoliak, S.. 1980. Potential economic impact of rangeland grasshoppers (Acrididae) in southeastern Alberta. Can. Ent. 112: 277284.CrossRefGoogle Scholar
Hardman, J. M. and Smoliak, S.. 1982. The relative impact of various grasshopper species on Stipa-Agropyron mixed prairie and fescue prairie in southern Alberta. J. Range Mgmt 35: 171176.CrossRefGoogle Scholar
Hewitt, G. B. 1977. Review of forage losses caused by rangeland grasshoppers. U.S. Dep. Agric. Misc. Publ. 1348. 24 pp.Google Scholar
Holmberg, R. G. and Turnbull, A. L.. 1982. Selective predation in a euryphagous invertebrate predator, Pardosa vancouveri (Arachnida: Araneae). Can. Ent. 114: 243257.CrossRefGoogle Scholar
*Hunter-Jones, P. 1961. Rearing and breeding locusts in the laboratory. Anti-Locust Research Centre, London.Google Scholar
Keister, M. and Buck, J.. 1974. Respiration: some exogenous and endogenous effects on rate of respiration. pp. 469509in Rockstein, M. (Ed.), Physiology of Insecta. Academic Press, N.Y.CrossRefGoogle Scholar
Misra, S. D. and Putnam, L. G.. 1966. The damage potential of the grasshopper, Camnula pellucida (Scudd.) (Orthoptera:Acrididae) on pastures and ranges in Canada. Indian J. Ent. 28: 224233.Google Scholar
Mitchell, J. E. and Pfadt, R. E.. 1974. A role of grasshoppers in a short grass prairie ecosystem. Environ. Ent. 3: 358360.CrossRefGoogle Scholar
Nagy, B. 1952. Food consumption of Dociostaurus crucigerus brevicollis Eversm. and Oedipoda coerulescens L. (Orth. Acrididae). Acta Biol. Acad. Sci., Hung. 3: 4152.Google Scholar
Parker, J. R. 1930. Some effects of moisture and temperature upon Melanoplus mexicanus mexicanus Saussure and Camnula pellucida Scudder (Orthoptera). Mont. agric. Exp. Stn Bull. 233. 132 pp.Google Scholar
Reichle, D. E. 1968. Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology 49: 538542.CrossRefGoogle Scholar
Riegert, P. W. and Varley, J. L.. 1973. Above-ground invertebrates: II. Population dynamics and biomass production of grasshoppers. Can. Comm. int. Biol. Prog., Matador Project, Tech. Rep. 16. 134 pp.Google Scholar
Rodell, C. F. 1977. A grasshopper model for a grassland ecosystem. Ecology 58: 227245.Google Scholar
Shotwell, R. L. 1941. Life histories and habits of some grasshoppers of economic importance on the Great Plains. U.S. Dep. Agric. Tech. Bull. 774. 47 pp.Google Scholar
Smith, D. S. and Holmes, N. D.. 1977. The distribution and abundance of adult grasshoppers (Acrididae) in crops in Alberta, 1918–1975. Can. Ent. 109: 575592.CrossRefGoogle Scholar
Van der Drift, J. 1951. Analysis of the animal community in a beech forest floor. Tijdschr. Ent. 94: 1168.Google Scholar
Yoshida, Y. 1956. Relation between the sardine and food plankton. III. On the growth curve of Sardinops melanosticta. Bull. Jap. Soc. Sci. Fish. 21: 10071010.Google Scholar
Zeuthen, E. 1953. Oxygen uptake as related to body size in organisms. Quart. Rev. Biol. 28: 112.Google Scholar