Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T09:17:29.476Z Has data issue: false hasContentIssue false

REARING METHODS AND DEMOGRAPHIC STATISTICS FOR A SUBTERRANEAN MORPH OF THE SUGARBEET ROOT APHID (HOMOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

Christopher D. Campbell
Affiliation:
Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA 55108
William D. Hutchison
Affiliation:
Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA 55108

Abstract

A reliable method for rearing the subterranean summer morph of the sugarbeet root aphid, Pemphigus betae Doane, is described. Field-collected aphids were reared using hydroponic growth pouches that allowed exposed root tissue to be fed on by P. betae. The aphid has been maintained in continuous culture for over 3 years. Open pouches were subsequently modified with cages to provide more successful mass rearing. Cages placed on the pouch were devised to provide an arena that concentrated aphids on one area of the pouch, minimized wandering behavior, and ensured a more vigorous colony. During a 10-week mass rearing experiment, caged pouches consistently averaged 120.8 ± 9.6(se) aphids per cage (fourth instars and adults) following 2-week incubation periods. Caged pouches also were used to isolate individual aphids for development and fecundity studies. Age-specific life tables were developed for P. betae using both open pouches at 20°C, and caged pouches at 24°C. Although the intrinsic rate of increase (rm) was lower at 20°C on a daily time scale (rm = 0.2314 versus 0.2591), rm was significantly greater at 20°C on a degree-day (DD > 7.6°C) time scale (rm = 0.0187 versus 0.0158). The difference on a DD basis resulted primarily from a longer time interval from birth to first reproduction (TFR) at 24°C(TFR = 158.5 versus 147.1 DD at 20°C). These results corroborate previous experience with P. betae, indicating that 20°C appeared to be an optimum temperature for mass rearing. Stable age distributions for P. betae cohorts were only slightly affected by temperature; on average approximately 55, 22, 11, 7, and 5% of the aphids were first, second, third, and fourth instars, and adults, respectively. Though similar studies have not been reported for other Pemphigus spp., all demographic statistics were characteristic of many foliar-feeding aphids held under similar constant temperature conditions.

Résumé

Une méthode très satisfaisante a été mise au point pour faire l’élevage de la forme souterrainne d’été du Puceron de la betterave à sucre, Pemphigus betae Doane. Des pucerons récoltés en nature ont été gardés en élevage dans des poches de croissance hydroponique leur permettant de se nourrir sur les tissus radiculaires exposés des betteraves. Les pucerons ont pu être gardés ainsi en élevage pour plus de 3 ans. Les poches ouvertes ont été modifiés par la suite par l’addition de cages qui ont permis l’élevage en masse. Les cages placées sur les poches étaient conçues de façon à créer un espace qui concentrait les pucerons sur une surface de la poche, à minimiser les déplacements et à rendre la colonie plus résistante. Au cours d’une expérience d’élevage en masse d’une durée de 10 semaines, les poches munies de cages ont donné en moyenne 120,8 ± 9,6 (erreur type) pucerons par cage (quatrième stade et adultes) après 2 semaines d’incubation. Les poches munies de cages ont également été utilisées pour isoler des pucerons en vue d’étudier leur développement et leur fécondité. Des tables de survie spécifiques à l’àge ont été bâties d’après les résultats obtenus sur les poches ouvertes à 20°C et sur les poches munies de cages à 24°C. Bien que le taux intrinsèque de croissance de la population (rm) se soit avéré plus faible à 20°C sur une échelle temporelle quotidienne (rm = 0,2314 versus 0,2591), rm était significativement plus élevé à 20°C sur une échelle en degré-jours (DJ > 7,6°C) (rm = 0,0187 versus 0,0158). La différence entre les résultats obtenus sur les deux échelles est surtout attribuable à l’intervalle plus long entre la naissance et la première reproduction (TFR) à 24°C (TFR = 158,5 versus 147,1 DJ à 20°C). Ces résultats corroborent ceux d’expériences antérieures sur la même espèce, à savoir que 20°C représente la température optimale d’élevage en masse. La répartition en fonction de l’âge au sein des différentes cohortes était peu affectée par la température; en moyenne, environ 55% des pucerons étaient des larves de premier stade, 22%, des larves de deuxième stade, 11%, des larves de troisième stade, 7%, des larves de quatrième stade et 5%, des adultes. Il n’existe pas de travaux semblables sur d’autres espèces de Pemphigus, mais toutes les statistiques démographiques présentées ici sont caractéristiques de plusieurs espèces de pucerons phyllophages gardées dans des conditions semblables de température constante.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology 5: 388396.CrossRefGoogle Scholar
Barlow, C.A. 1962. The influence of temperature on the growth of experimental populations of Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Aphididae). Canadian Journal of Zoology 40: 145156.CrossRefGoogle Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17: 1526.CrossRefGoogle Scholar
Brown, R. 1994. TableCurve 2D for Windows User's Manual. Ver. 2.0. AISN Software, Inc., Jandel Scientific, San Rafael, CA.Google Scholar
Campbell, A., and Mackauer, M.. 1977. Reproduction and population growth of the pea aphid (Homoptera: Aphididae) under laboratory and field conditions. The Canadian Entomologist 109: 277284.CrossRefGoogle Scholar
Carey, J.R. 1983. Practical application of the stable age distribution: Analysis of a Tetranychid mite (Acari: Tetranychidae) population outbreak. Environmental Entomology 12: 1018.CrossRefGoogle Scholar
Elliott, N.C., Kieckhefer, R.W., and Walgenbach, D.D.. 1988. Effects of constant and fluctuating temperatures on development rates and demographic statistics for the corn leaf aphid (Homoptera: Aphididae). Journal of Economic Entomology 81: 13831389.CrossRefGoogle Scholar
Frazer, B.D. 1972. Life tables and intrinsic rate of increase of apterous black bean aphids and pea aphids, on broad bean (Homoptera: Apididae). The Canadian Entomologist 104: 17171722.CrossRefGoogle Scholar
Harper, A.M. 1963. Sugar-beet root aphid, Pemphigus betae Doane (Homoptera: Aphididae), in southern Alberta. The Canadian Entomologist 95: 863873.CrossRefGoogle Scholar
Hutchison, W.D., and Campbell, C.D.. 1991. Biology, yield impact and management of the sugarbeet root aphid in southern Minnesota: First-year results. 1990 Sugarbeet Research and Extension Reports, North Dakota State University Extension Service, North Dakota State University, Fargo 21: 151159.Google Scholar
Hutchison, W.D., and Campbell, C.D.. 1993. Overwintering biology of the sugarbeet root aphid: Development and validation of a spring phenology forecasting model. 1992 Sugarbeet Research and Extension Reports, North Dakota State University Extension Service, North Dakota State University, Fargo, N.D. 23: 129144.Google Scholar
Hutchison, W.D., and Campbell, C.D.. 1994. Economic impact of the sugarbeet root aphid (Homoptera: Aphididae) on sugarbeet yield and quality in southern Minnesota. Journal of Economic Entomology 87: 465475.CrossRefGoogle Scholar
Hutchison, W.D., and Hogg, D.B.. 1984. Demographic statistics for the pea aphid (Homoptera: Aphididae) in Wisconsin and a comparison with other populations. Environmental Entomology 13: 11731181.CrossRefGoogle Scholar
Hutchison, W.D., and Campbell, C.D.. 1985. Time-specific life tables for the pea aphid, Acyrthosiphon pisum (Harris), on alfalfa. Researches in Population Ecology (Kyoto) 27: 231253.CrossRefGoogle Scholar
Lewontin, R.C. 1965. Selection for colonizing ability. pp. 7791in Baker, H.G., and Stebbins, G.L. (Eds.), The Genetics of Colonizing Species. Academic Press, New York, NY.Google Scholar
Logan, J.A. 1988. Toward an expert system for development of pest simulation models. Environmental Entomology 17: 359376.CrossRefGoogle Scholar
Meyer, J.S., Ingersoll, C.G., McDonald, L.L., and Boyce, M.S.. 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67: 11561166.CrossRefGoogle Scholar
Moran, N., Seminoff, J., and Johnstone, L.. 1993 a. Induction of winged sexuparae in root-inhabiting colonies of the aphid Pemphigus betae. Physiological Entomology 18: 296302.CrossRefGoogle Scholar
Moran, N., Seminoff, J., and Johnstone, L.. 1993 b. Genotypic variation in propensity for host alternation within a population of Pemphigus betae (Homoptera: Aphidide). Journal of Evolutionary Biology 6: 691705.CrossRefGoogle Scholar
Pinder, J.E. III, Weiner, J.G., and Smith, M.H.. 1978. The Weibull distribution: A new method of summarizing survivorship data. Ecology 59: 175179.CrossRefGoogle Scholar
Ralston, M.L., and Jennrich, R.I.. 1978. DUD, a derivative-free algorithm for nonlinear least squares. Technometrics 20: 714.CrossRefGoogle Scholar
Royer, T.A., Harris, M.K., and Edelson, J.V.. 1991. A technique and apparatus for isolating and rearing subterranean aphids on herbaceous hosts. Southwestern Entomologist 16: 100106.Google Scholar
SAS Institute. 1986. SAS/STAT User's Guide, Release 6.03 ed. SAS Institute, Cary, NC.Google Scholar
Summers, C.G., Coviello, R.L., and Gutierrez, A.P.. 1984. Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae). Environmental Entomology 13: 236242.CrossRefGoogle Scholar
Summers, C.G., and Newton, A.S.. 1989. Economic significance of sugarbeet root aphid, Pemphigus populivenae Fitch (Homoptera: Aphididae) in California. Applied Agricultural Research 4: 162167.Google Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., and Coulson, R.N.. 1984. Modeling distributions of insect development time: A literature review and application of the Weibull function. Annals Entomological Society of America 77: 475487.CrossRefGoogle Scholar
Whitham, T.G. 1978. Habitat selection by Pemphigus aphids in response to resource limitation and competition. Ecology 59: 11641176.CrossRefGoogle Scholar