Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T03:58:08.190Z Has data issue: false hasContentIssue false

PYRETHROID RESISTANCE IN PEAR PSYLLA, PSYLLA PYRICOLA FOERSTER (HOMOPTERA: PSYLLIDAE), AND SYNERGISM OF PYRETHROIDS WITH PIPERONYL BUTOXIDE

Published online by Cambridge University Press:  31 May 2012

Everett C. Burts
Affiliation:
Washington State University, Tree Fruit Research and Extension Center, Wenatchee, Washington, USA98801
Hugo E. van de Baan
Affiliation:
Department of Entomology, Oregon State University, Corvallis, Oregon, USA97331
Brian A. Croft
Affiliation:
Department of Entomology, Oregon State University, Corvallis, Oregon, USA97331

Abstract

Adult pear psylla, Psylla pyricola Foerster, from commercial pear orchards near Wenatchee, WA, were tested using a slide-dip technique for susceptibility to fenvalerate over a 5-year period from 1984 to 1988. Results were compared with those from similar tests using psyllids from an unexposed population near Corvallis, OR. During 5 years, resistance of adults to fenvalerate increased by 16- to 32-fold at Wenatchee while that of the Corvallis population did not change. In 1988, tests with five pyrethroids and pyrethroid – piperonyl butoxide combinations indicated that pear psylla adults also were resistant to permethrin and flucythrinate but not to fenpropathrin or cyfluthrin which contain a cyano group that reduces their susceptibility to oxidase metabolism. Piperonyl butoxide synergism was proportional to the level of resistance, indicating that resistance is probably due to increased mixed function oxidase activity. Implications of this study to control of post-diapause winter form adults in commercial pear orchards is discussed.

Résumé

On a testé des adultes du psylle du poirier, Psylla pyricola Foerster, provenant de vergers commerciaux de poirier situés près de Wenatchee, WA, pour déterminer leur susceptibilité au fenvalérate par trempage, au cours d’une période de 5 ans de 1984 à 1988. Les résultats étaient comparables à ceux de tests semblables effectués sur des psylles provenant de populations non traitées de Corvallis, OR. Au cours des 5 ans, la résistance des adultes au fenvalérate a augmenté de 16 à 32 fois à Wenatchee, alors que celle de la population de Corvallis n’a pas changé. En 1988, des tests avec cinq pyréthroïdes ou combinaisons pyréthroïde – butoxide de pipéronyle, ont montré que les psylles adultes étaient aussi résistants à la perméthrine et au flucythrinate, et non résistants à la fenpropathrine ou à la cyfluthrine, qui contiennent un radical cyano réduisant leur sensibilité au métabolisme oxidasique. Le synergisme par le butoxide de pipéronyle indiquait que la résistance est probablement due à un accroissement de l’activité d’oxidase de fonction mixte. On discute des implications de cette étude pour la répression des adultes post-diapausants en pyriculture commerciale.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for determining the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Agosin, M. 1985. Role of microsomal oxidation in insecticide degradation. pp. 647712in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology. V 12. Insect Control. Pergamon Press, New York.Google Scholar
Baillie, A.C., and Wright, K.. 1985. Biochemical pharmacology. pp. 323356in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology. V 12. Insect Control. Pergamon Press, New York.Google Scholar
Burts, E.C. 1964. An evaluation of insecticides for control of pear psylla. Wash. Agric. Exp. Stn. Circ. 438. 11 pp.Google Scholar
Burts, E.C. 1985. SN 72129 and avermectin, two new pesticides for control of pear psylla (Homoptera: Psyllidae). J. econ. Ent. 78: 13271330.CrossRefGoogle Scholar
Burts, E.C., and Brunner, J.F.. 1981. Dispersion statistics and sequential sampling plan for adult pear psylla. J. econ. Ent. 74: 291294.CrossRefGoogle Scholar
Follett, P.A., Croft, B.A., and Westigard, P.H.. 1985. Regional resistance to pesticides in Psylla pyricola from Oregon pear orchards. Can. Ent. 117: 565573.CrossRefGoogle Scholar
Harries, F.H., and Burts, E.C.. 1965. Insecticide resistance in the pear psylla. J. econ. Ent. 58: 172173.CrossRefGoogle Scholar
Retan, A.R., and Burts, E.C.. 1984. Insect answers: pear psylla detection and control. Wash. State Univ. Ext. Mimeo. 3069. 4 pp.Google Scholar
Riedl, H., Westigard, P.H., Bethell, R.S., and DeTar, J.E.. 1981. Problems with chemical control of pear psylla. Calif. Agric. 35: 79.Google Scholar
Van de Baan, H.E. 1988. Factors influencing pesticide resistance in pear psylla, Psylla pyricola and susceptibility in its mirid predator, Deraeocoris brevis. Ph.D. thesis, Oreg. State Univ., Corvallis. 102 pp.Google Scholar
Van de Baan, H.E., Westigard, P.H., Burts, E.C., and Croft, B.A.. 1988. Seasonal susceptibility to insecticides in insecticide resistant pear psylla, Psylla pyricola (Homoptera: Psyllidae). Crop Protect. In press.Google Scholar
Westigard, P.H., and Zwick, R.W.. 1972. The pear psylla in Oregon. Oreg. State Agric. Bull. 122. 22 pp.Google Scholar