Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T05:16:25.130Z Has data issue: false hasContentIssue false

PREDICTING LARVAL ABUNDANCE OF THE BERTHA ARMYWORM, MAMESTRA CONFIGURATA WLK., IN MANITOBA FROM CATCHES OF MALE MOTHS IN SEX ATTRACTANT TRAPS1

Published online by Cambridge University Press:  31 May 2012

W.J. Turnock
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Two cone-orifice-type traps baited with (Z)-11-hexadecen-1-ol acetate (1.0 mg) and (Z)-9-tetradecen-1-ol acetate (0.05 mg) were placed in each of 5–13 canola (Brassica spp.) fields per year for 7 years at locations distributed throughout the area in Manitoba subject to outbreaks of the bertha armyworm, Mamestra configurata Wlk. (Lepidoptera: Noctuidae). The number of male moths per trap varied from 0 to 821 in the 90 fields trapped. Larval density, in the trap fields and in 185 nearby canola fields, varied from 0 to 105 per square metre. There was a direct relationship between the number of moths per trap and the density of late-instar larvae (L4–L6) for the trap fields and for nearby (within 5 km) fields but variability was loo high to allow accurate prediction of larval densities for individual fields. However, the number of moths per trap could be used to predict the proportion of fields in the vicinity of the trap field that would have larval densities above the economic threshold. No fields with above-threshold larval densities occurred with captures of <20 moths per trap. The proportion of fields with larval densities above the economic threshold increased from 0.10 with 20–30 moths per trap, lo 0.19 with 30–60 moths per trap, 0.64 with 70–100 moths per trap, and 0.91 with over 100 moths per trap. Contamination of catches by non-target species of noctuid moths had insignificant effects on the accuracy of these predictions because even if they were misidentified as M. configurata the number of moths per trap changed only marginally. Populations of M. configurara were higher and local outbreaks occurred more frequently in canola-growing areas adjacent to morainic hills along the Manitoba Escarpment, whereas populations were low in areas of the Manitoba Lowlands and of the Western Uplands. A proposed monitoring system for M. configurata in Manitoba is described.

Résumé

Deux pièges à orifice en cône appâtés à l’acétate de (Z)-11-hexadécène-1-ol (1,0 mg) et à l’acétate de (Z)-9-tétradécène-1-ol (0,05 mg) ont été placés dans chacun de 5–13 champs de colza canola (Brassica spp.) par année pendant 7 ans à des endroits répartis dans toute la zone du Manitoba exposée à des foyers d’infestation de la légionnaire bertha, Mamestra configurata Wlk. (Lépidoptères : Noctuidés). Le nombre de papillons mâles capturés par piège varie de 0 à 821 dans les 90 champs piégés. La densité des larves, dans les champs piégés et dans 185 champs de colza canola voisins, varie de 0 à 105 par m2. Il existe un rapport direct entre le nombre de papillons capturés par piège et la densité de larves rendues au stade tardif de développement (L4–L6) pour les champs piégés et pour les champs avoisinants (moins de 5 km), mais la variabilité est trop élevée pour permettre la prédiction exacte des densités larvaires de chaque champ. Toutefois, le nombre de papillons capturés par piège pourrait servir à prédire la proportion de champs situés dans le voisinage du champ piégé qui auraient des densités larvaires supérieures au seuil économiquement acceptable. Pour un nombre inférieur à 20 papillons par piège, aucun champ ne présente de densité larvaire supérieure au seuil économique. La proportion des champs affichant des densités larvaires supérieures à ce seuil augmente de 0,10 pour des densités de 20–30 papillons par piège à 0,19 pour des densités de 30–60 papillons par piège, à 0,64 pour des densités de 70–100 et à 0,91 pour les densités supérieures à 100 papillons par piège. La contamination des captures par des espèces non visées de Noctuidés n’a pas d’effet significatif sur l’exactitude de ces prédictions car même si elles étaient mal identifiées comme appartenant à M. configurata, le nombre de papillons capturés par piège n’a varié que très légèrement. Les populations de M. configurata sont plus denses et des foyers d’infestation locaux se déclenchent plus fréquemment dans la région de culture du colza canola voisine des collines morainiques le long de l’escarpement Manitoba, alors que les populations sont plutôt faibles dans les zones des terres basses du Manitoba et des terres hautes de l’Ouest. L’auteur décrit un projet de système de surveillance de M. configurata au Manitoba.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, C.S. 1976. A quantitative study of consumption and utilization of various diets in the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Can. Ent. 108: 13191326.CrossRefGoogle Scholar
Beirne, B.P. 1971. Pest insects of annual crop plants in Canada. Mem. ent. Soc. Can. 78.Google Scholar
Bracken, G.K. 1984. Within plant preferences of larvae of Mamestra configurata (Lepidoptera: Noctuidae) feeding on oilseed rape. Can. Ent. 116: 4549.CrossRefGoogle Scholar
Bracken, G.K., and Bucher, G.E.. 1984. Measuring the cost-benefit of control measures for bertha armyworm (Lepidoptera: Noctuidae) infestations in rapeseed. Can. Ent. 116: 591595.CrossRefGoogle Scholar
Chisholm, M.D., Steck, W.F., Arthur, A.P., and Underhill, E.W.. 1975. Evidence for cis-11-hexadecen-1-ol acetate as a major component of the sex pheromone of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Can. Ent. 107: 361366.CrossRefGoogle Scholar
Faculty of Agriculture, University of Manitoba (comp.). 1977. Principles and Practices of Commercial Farming. Publ. Office, University of Manitoba.Google Scholar
Howlader, G.A., and Gerber, G.H.. 1986. Effects of age, egg development, and mating on calling behavior of the bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae). Can. Ent. 118: 12211230.CrossRefGoogle Scholar
Johnson, D.R. 1983. Relation between tobacco budworm (Lepidoptera: Noctuidae) catches when using pheromone traps and egg counts in cottons. J. econ. Ent. 76: 182183.CrossRefGoogle Scholar
King, K.M. 1928. Barathra configurata Wlk., an armyworm with important potentialities on the northern prairies. J. econ. Ent. 21: 279293.CrossRefGoogle Scholar
King, K.M. 1929. The bertha armyworm in the prairie provinces. Canada Dept. Agric. Pamphlet 103. New Series. 10 pp.Google Scholar
Klassen, W., Ridgeway, R.L., and Imscoe, M.. 1982. Chemical attractants in integrated pest management programs. pp. 13130in Kydonieus, A.F., and Beroza, M. (Eds.), Insect Suppression with controlled release pheromone systems. Vol. I. CRC Press.Google Scholar
Lamb, R.J., Turnock, W.J., and Hayhoe, H.N.. 1985. Winter survival and outbreaks of bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), on canola. Can. Ent. 117: 727736.CrossRefGoogle Scholar
Munro, J.A. 1930. Bertha armyworm control. In Trowbridge, P.F. (Ed.), Experiment Station Progress. Bull. N. Dakota Agric. Exp. Sta. 233: 7175.Google Scholar
Revington, J., VanRensburg, J.B.J., Burghardt, G., and Knauf, W.. 1984. Preliminary field trials with a pheromone-based monitoring system for the maize stalkborer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). J. ent. Soc. Sth Afr. 47: 107113.Google Scholar
Smith, D.L., Kolach, A.J., and McCullough, M.J.. 1986. Manitoba Insect Control Guide. Manitoba Agriculture.Google Scholar
Steck, W., and Bailey, B.K.. 1978. Pheromone traps for moths: evaluation of cone trap designs and design parameters. Environ. Ent. 7: 449455.CrossRefGoogle Scholar
Steck, W., Underhill, E.W., and Chisholm, M.D.. 1982. Structure–activity relationships in sex attractants for North American noctuid moths. J. Chem. Ecol. 8: 731754.CrossRefGoogle ScholarPubMed
Steck, W., Underhill, E.W., Chisholm, M.D., Peters, C.C., Philip, H.G., and Arthur, A.P.. 1979. Sex pheromone traps in population monitoring of adults of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Can. Ent. 111: 9195.CrossRefGoogle Scholar
Struble, D.L., Jacobson, M., Green, N., and Warthen, J.D.. 1975. Bertha armyworm (Lepidoptera: Noctuidae): detection of a sex pheromone and the stimulatory effect of some synthetic chemicals. Can. Ent. 107: 355359.CrossRefGoogle Scholar
Turnock, W.J. 1984. Effects of the stage of development of canola (Brassica napus) on the capture of moths in sex attractant traps and on larval density of Mamestra configurata. Can. Ent. 116: 579590.CrossRefGoogle Scholar
Turnock, W.J. 1985. Developmental, survival and reproductive parameters of bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae) on four plant species. Can. Ent. 117: 12671271.CrossRefGoogle Scholar
Turnock, W.J., and Bilodeau, R.J.. 1985. A comparison of three methods of examining the density of larvae of the bertha armyworm, Mamestra configurata, in fields of canola (Brassica spp.). Can. Ent. 117: 10651066.CrossRefGoogle Scholar
Turnock, W.J., Chong, J., and Luit, B.. 1978. Scanning electron microscopy: a direct method of identifying pollen grains on moths (Noctuidae: Lepidoptera). Can. J. Zool. 56: 20502054.CrossRefGoogle Scholar
Turnock, W.J., and Philip, H.G.. 1977. The outbreak of bertha armyworm Mamestra configurata (Noctuidae: Lepidoptera) in Alberta 1971 to 1975. Manitoba Ent. 11: 1021.Google Scholar
Underhill, E.W., Steck, W.F., and Chisholm, M.D.. 1977. A sex pheromone mixture for the bertha armyworm moth, Mamestra configurata: (Z)-9-tetradecen-1-ol acetate and (Z)-11-hexadecen-1-ol acetate. Can. Ent. 109: 13351340.CrossRefGoogle Scholar