Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T05:34:12.479Z Has data issue: false hasContentIssue false

POPULATION TRENDS OF A SPECIALIST HERBIVORE, THE SPRUCE BUD MOTH, IN YOUNG WHITE SPRUCE STANDS

Published online by Cambridge University Press:  31 May 2012

Don P. Ostaff*
Affiliation:
Atlantic Forestry Centre, Canadian Forest Service, Natural Resources Canada, P.O. Box 4000, Regent Street, Fredericton, New Brunswick, Canada E3B 5P7
Dan T. Quiring
Affiliation:
Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6C2
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

We investigated the factors responsible for changes in abundance of the spruce bud moth, Zeiraphera canadensis Mut. and Free. (Lepidoptera: Tortricidae) in one unmanaged and several managed (i.e., planted) young white spruce, Picea glauca (Moench.) Voss (Pinaceae), stands in northern New Brunswick, Canada. Spruce bud moth densities declined when one stand closed (branches from neighbouring trees overlapped) and had already declined in another similarly aged closed stand, but remained high on 8- to 22-year-old open-grown white spruce. Both the intrageneration survival rate and the egg-to-moth ratios increased when population densities increased, and generally decreased, although the egg-to-moth ratio fluctuated, during the population decline in a managed stand. Increases in intrageneration survival rates of spruce bud moth on 5- to 10-year-old trees were due to increased larval or pupal survival. Crown closure explained 76 and 81% of the variability in larval and intrageneration survival, respectively, in four managed stands. The strong inverse relationship between larval survival and degree of crown closure resulted in statistically significant but spurious relationships between larval survival and larval density and between larval survival and tree age. A reduction in larval survival occurring as degree of crown closure increased was the most important factor influencing decreases in intrageneration survival at the beginning of population decline. Increases in the egg-to-moth ratio during the population increase, and decrease during population decline, suggested that dispersal behaviour and (or) realized fecundity of females also contributed to annual changes in population.

Résumé

Nous avons étudié les facteurs à l’origine de la variation dans l’abondance de la tordeuse de l’épinette, Zeiraphera canadensis Mut. et Free. (Lepidoptera : Tortricidae) dans un peuplement naturel et dans plusieurs peuplements aménagés de jeunes épinettes blanches (plantées), Picea glauca (Moench.) Voss (Pinaceae), dans le Nord du Nouveau-Brunswick, au Canada. Les densités de tordeuses de l’épinette ont diminué lorsqu’un peuplement s’est refermé (les branches des arbres avoisinants se sont rejointes) et elles avaient déjà diminué dans un autre peuplement fermé d’âge semblable, mais elles sont restées élevées dans des épinettes blanches âgées de 8 à 22 ans qui étaient en situation de croissance libre. Le taux de survie intragénération du ravageur et la proportion oeufs-papillons ont varié au cours de la baisse de population de tordeuses dans un peuplement aménagé. Les augmentations des taux de survie intragénération de la tordeuse de l’épinette sur des arbres âgés de 5 à 10 ans sont attribuables au nombre accru de larves ou de nymphes qui ont survécu. La fermeture du couvert explique les écarts de 76 et de 81% dans la variation du taux de survie des larves et du taux de survie intragénération, en particulier dans quatre peuplements aménagés. La relation inverse prononcée entre la survie des larves et le degré de fermeture du couvert forestier a donné lieu à des rapports statistiquement importants, mais à des relations parasites entre la survie et la densité des larves et entre la survie des larves et l’âge des arbres. Le facteur le plus important de la diminution du taux de survie intragénération au début du déclin de la population a été la diminution du taux de survie des larves à la suite du resserrement accru du couvert. L’augmentation de la proportion oeufs-papillons en même temps que l’augmentation de la population et sa diminution pendant une baisse de population laissent entendre que ce comportement de dispersion et (ou) la fécondité réelle des femelles a également contribué aux variations annuelles de la population.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baltensweiler, W. 1993 a. Why the larch bud-moth cycle collapsed in the subalpine larch – cembran pine forests in the year 1990 for the first time since 1850. Oecologia 94: 62–6CrossRefGoogle ScholarPubMed
Baltensweiler, W. 1993 b. A contribution to the explanation of the larch bud moth cycle, the polymorphic fitness hypothesis. Oecologia 94: 251–5CrossRefGoogle Scholar
Baltensweiler, W., Benz, G., Bovey, P., Delucchi, V. 1977. Dynamics of larch bud moth populations. Annual Review of Entomology 22: 79100CrossRefGoogle Scholar
Berisford, C.W. 1988. The Nantucket pine tip moth. pp. 142–61 in Berryman, A.A. (Ed), Dynamics of forest insect populations: patterns, causes and implications. New York: Plenum PressGoogle Scholar
Campbell, R.W., Sloan, R.J., Biazak, C.E. 1977. Sources of mortality among late instar gypsy moth larvae in sparse populations. Environmental Entomology 6: 865–71CrossRefGoogle Scholar
Carroll, A.L., Quiring, D.T. 1993 a. Influence of feeding by Zeiraphera canadensis (Lepidoptera: Tortricidae) on growth of white spruce: larval density – damage and damage – shoot production relationships. Journal of Applied Ecology 30: 629–39CrossRefGoogle Scholar
Carroll, A.L., Quiring, D.T. 1993 b. Interactions between size and temperature influence fecundity and longevity of a tortricid moth, Zeiraphera canadensis. Oecologia 93: 233–41CrossRefGoogle ScholarPubMed
Craig, T.P., Price, P.W., Itami, J.K. 1986. Resource regulation by a stem-galling sawfly on the arroyo willow. Ecology 67: 419–25CrossRefGoogle Scholar
Danell, K., Huss-Danell, K. 1985. Feeding by insects and hares on birches earlier affected by moose browsing. Oikos 44: 7581CrossRefGoogle Scholar
Day, K. 1984. Phenology, polymorphism and insect–plant relationships of the larch bud moth, Zeiraphera diniana (Guenee) (Lepidoptera: Tortricidae), on alternative conifer hosts in Britain. Bulletin of Entomological Research 74: 4764CrossRefGoogle Scholar
Embree, D.G. 1965. The population dynamics of the winter moth in Nova Scotia, 1954–1962. Memoirs of the Entomological Society of Canada 46: 557CrossRefGoogle Scholar
Feeny, P. 1976. Plant apparency and chemical defense. Biochemical interactions between plants and insects. Recent Advances in Phytochemistry 10: 140Google Scholar
Fewer, O.G. 1990. Parasitism and predation of egg of the spruce bug moth, Zeiraphera candensis. BScF thesis, University of New Brunswick, Fredericton, New BrunswickGoogle Scholar
Gargiullo, P.M., Berisford, C.W. 1983. Life tables for the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), and the pitch pine tip moth, Rhyacionia rigidana (Fernald) (Lepidoptera: Tortricidae). Environmental Entomology 12: 13911402CrossRefGoogle Scholar
Haukioja, E. 1980. On the role of plant defenses in the fluctuation of herbivore populations. Oikos 35: 202–13CrossRefGoogle Scholar
Haukioja, E., Neuvonen, S. 1985. Induced long-term resistance of birch foliage against defoliators: defensive or incidental? Ecology 66: 1303–8CrossRefGoogle Scholar
Houseweart, M.W., Kulman, H.M. 1976. Life tables of the yellow-headed spruce sawfly, Pikonema alaskensis (Hymenoptera: Tenthredinidae), in Minnesota, USA. Environmental Entomology 5: 859–67CrossRefGoogle Scholar
Ives, W.G.H. 1976. The dynamics of larch sawfly (Hymenoptera: Tenthredinidae) populations in southeastern Manitoba. The Canadian Entomologist 108: 701–30CrossRefGoogle Scholar
Karban, R. 1990. Herbivore outbreaks on only young trees: testing hypotheses about aging and induced resistance. Oikos 59: 2732CrossRefGoogle Scholar
Kearsley, M.J.C., Whitham, T.G. 1989. Developmental changes in resistance to herbivory: implications for individuals and populations. Ecology 70: 422–34CrossRefGoogle Scholar
Little, C.H.A., Eidt, D.C. 1968. Effect of abscisic acid on budbreak and transpiration in woody species. Nature(London) 220: 498–9CrossRefGoogle Scholar
Martin, J.L. 1966. The insect ecology of red pine plantations in central Ontario. IV. The crown fauna. The Canadian Entomologist 98: 1027CrossRefGoogle Scholar
Martineau, R. 1984. Insects harmful to forest trees. Ottawa: Canadian Forestry Service, Environment Canada, Canadian Government Publishing Centre, Supply and Services CanadaGoogle Scholar
Mason, R.R. 1976. Life tables for a declining population of the Douglas-fir tussock moth in northeast Oregon. Annals of the Entomological Society of America 69: 948–58CrossRefGoogle Scholar
Mason, R.R. 1981. Numerical analysis of the causes of population collapse in a severe outbreak of the Douglas-fir tussock moth. Annals of the Entomological Society of America 74: 51–7CrossRefGoogle Scholar
Mason, R.R., Thompson, C.G. 1971. Collapse of an outbreak population of Douglas-fir tussock moth, Hemerocampa pseudotsugata (Lepidoptera: Lymantriidae). United States Department of Agriculture, Forest Service, Research Note PNW–139Google Scholar
Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11: 119–61CrossRefGoogle Scholar
Mattson, W.J., Herms, D.A., Witter, J.A., Allen, D.C. 1991. Woody plant grazing systems: North American outbreak folivores and their host plants. pp. 5384in Baranchikov, Y.N., Mattson, W.J., Hain, F.P., Payne, T.L. (Eds), Forest insect guilds: patterns of interactions with host trees. US Department of Agriculture Forest Service Northeastern Forest Experiment Station General Technical Report NE–153Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist 97: 5862CrossRefGoogle Scholar
Nash, R.W. 1939. The yellowheaded spruce sawfly in Maine. Journal of Economic Entomology 32: 330–4CrossRefGoogle Scholar
Nealis, V.G. 1991. Parasitism in sustained and collapsing populations of the jack pine budworm, Choristoneura pinus pinus Free. (Lepidoptera: Tortricidae), in Ontario, 1985–1987. The Canadian Entomologist 123: 1065–75CrossRefGoogle Scholar
Neilson, M.M., Morris, R.F. 1964. The regulation of European spruce sawfly numbers in the Maritime Provinces of Canada from 1937 to 1963. The Canadian Entomologist 96: 773–84CrossRefGoogle Scholar
Ostaff, D.P. 1995. Population dynamics of a specialist herbivore, Zeiraphera canadensis, on young white spruce. PhD thesis, University of New Brunswick, Fredericton, New BrunswickGoogle Scholar
Ostaff, D.P., Quiring, D.T. 1994. Seasonal distribution of adult eclosion, oviposition, and parasitism and predation of eggs of the spruce bud moth, Zeiraphera canadensis (Lepidoptera: Tortricidae). The Canadian Entomologist 126: 9951006CrossRefGoogle Scholar
Ostaff, D.P., Quiring, D.T. 2000. Role of the host plant in the decline of populations of a specialist herbivore, the spruce bud moth. Journal of Animal Ecology 69: 263–73CrossRefGoogle Scholar
Pilon, J.G. 1965. Bionomics of the spruce budmoth, Zeiraphera ratzeburgiana (Ratz.) Lepidoptera: (Olethreutidae). Phytoprotection 46: 513Google Scholar
Price, P.W., Roininen, H., Tahvanainen, J. 1987. Plant age and attack by the bud galler, Euura mucronata. Oecologia 73: 334–7CrossRefGoogle ScholarPubMed
Quiring, D.T. 1993. Influence of intra-tree variation in time of budburst of white spruce on herbivory and the behavior and survivorship of Zeiraphera canadensis. Ecological Entomology 18: 353–64CrossRefGoogle Scholar
Quiring, D.T. 1994. Influence of inter-tree variation in time of budburst of white spruce on herbivory and the behavior and survivorship of Zeiraphera canadensis. Ecological Entomology 19: 1725CrossRefGoogle Scholar
Quiring, D.T., McKinnon, M.L. 1999. Why does early-season herbivory affect subsequent budburst? Ecology 80: 1724–35CrossRefGoogle Scholar
Quiring, D.T., Ostaff, D.P. 1995. Relationship between tree age and abundance of the spruce bud moth, Zeiraphera canadensis. pp. 433–8 in Hain, F.P., Salom, S.M., Ravlin, W.F., Payne, T.L., Raffa, K.F. (Eds), Proceedings of the International Union of Forestry Research Organizations, Joint Conference, February 1994. Maui, HawaiiGoogle Scholar
Quiring, D.T., Turgeon, J., Simpson, D., Smith, A. 1991. Genetically based differences in susceptibility of white spruce to the spruce bud moth. Canadian Journal of Forest Research 21: 42–7CrossRefGoogle Scholar
Rhoades, D.F. 1993. Herbivore population dynamics and plant chemistry. pp. 155220in Denno, R.F., McClure, M.S. (Eds.), Variable plants and herbivores in natural and managed systems. New York: Academic Press Inc.Google Scholar
Roininen, H., Price, P.W., Tahvanainen, J. 1993. Colonization and extinction in a population of the shoot-galling sawfly, Euura amerinae. Oikos 68: 448–54CrossRefGoogle Scholar
Royama, T. 1992. Analytical population dynamics. London: Chapman and HallCrossRefGoogle Scholar
Ryan, R.B. 1986. Analysis of life tables for the larch casebearer (Lepidoptera: Coleophoridae) in Oregon. The Canadian Entomologist 118: 1255–63CrossRefGoogle Scholar
SAS Institute Inc. 1993. The GENMOD procedure, release 6.09. SAS® Technical Report P-243, SAS/STAT® Software. Cary: SAS Institute Inc.Google Scholar
Schowalter, T.D. 1989. Canopy arthropod community structure and herbivory in old growth and regenerating forests in western Oregon. Canadian Journal of Forest Research 19: 318–22CrossRefGoogle Scholar
Schowalter, T.D., Hargrove, W.W., Crossley, D.A. Jr., 1986. Herbivory in forested ecosystems. Annual Review of Entomology 31: 177–96CrossRefGoogle Scholar
Scriber, J.M., Slansky, F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology 26: 183211CrossRefGoogle Scholar
Simandl, J. 1993. Canopy arthropods on Scots pine: influence of season and stand age on community structure and the position of sawflies (Diprionidae) in the community. Forest Ecology and Management 62: 8598CrossRefGoogle Scholar
Sower, L.L., Daterman, G.E., Sartwell, C. 1989. Biology and impact of western pine shoot borer, Eucosma sonomana, in western United States. pp. 102–9 in Alfaro, R.I., Glover, S.G. (Eds), Insects Affecting Reforestation: Biology and Damage, Proceedings of the 18th International Congress of Entomology, Vancouver, 3–9 July 1988. IUFRO Working Group on Insects Affecting Reforestation (S2.07-03). Ottawa: Forestry CanadaGoogle Scholar
Stiell, W.M. 1969. Crown development in white spruce plantations. Forestry Branch Department of Fisheries and Forestry Publication 1249Google Scholar
Turgeon, J.J. 1985. Life cycle and behavior of spruce bud moth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), in New Brunswick. The Canadian Entomologist 117: 1239–47CrossRefGoogle Scholar
Turgeon, J.J. 1986. The phenological relationship between the larval development of the spruce bud moth, Zeiraphera canadensis (Lepidoptera: Olethreutidae), and white spruce in northern New Brunswick.The Canadian Entomologist 118: 345–50CrossRefGoogle Scholar
Turgeon, J.J. 1992. Status of research on the development of management tactics and strategies for the spruce bud moth in white spruce plantations. Forestry Chronicle 68: 614–22CrossRefGoogle Scholar
Turgeon, J.J., Régnière, J. 1987. Development of sampling techniques for the spruce bud moth, Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae). The Canadian Entomologist 119: 239–49CrossRefGoogle Scholar
Watt, A.D. 1990. Pine beauty moth population dynamics. pp. 157–68 in Watt, A.D., Leather, S.R., Hunter, M.D., Kidd, N.A.C. (Eds), Dynamics of forest insects. Andover: Intercept Ltd.Google Scholar
Witter, J.A., Mattson, W.J., Kulman, H.M. 1972. Life tables for the forest tent caterpillar. Annals of the Entomological Society of America 65: 2531CrossRefGoogle Scholar