Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:57:45.132Z Has data issue: false hasContentIssue false

POPULATION DENSITY ESTIMATION OF SPRUCE BUDWORM, CHORISTONEURA FUMIFERANA (CLEM.) (LEPIDOPTERA: TORTRICIDAE) ON BALSAM FIR AND WHITE SPRUCE FROM 45-CM MID-CROWN BRANCH TIPS

Published online by Cambridge University Press:  31 May 2012

Jacques Régnière
Affiliation:
Forestry Canada, Qukbec Region, Laurentian Forestry Centre, PO Box 3800, Sainte-Foy, Québec, Canada G1V 4C7
Timothy J. Lysyk
Affiliation:
Forestry Canada, Great Lakes Forestry Centre, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Michel Auger
Affiliation:
Minisère de l'énergie et des ressources du Québec, 1530 Blvd de l'Entente, Québec, Québec, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 45-cm mid-crown branch tip from balsam fir and white spruce is described in terms of surface area, fresh weight, and bud density. Fresh weight is suggested as the most appropriate unit to express density of all stages of the spruce budworm’s, Choristoneura fumiferana (Clem.), life cycle, particularly for the purposes of comparisons between host species and locations with different foliage conditions.

Changes in distribution of the spruce budworm in the crown of balsam fir are documented for all stages of the insect’s life cycle. Correction factors to account for these changes when estimating density on the basis of the 45-cm branch tip sampling unit are given for balsam fir and white spruce.

The amount of error in detection of spruce budworm larvae on foliage of both host trees by sampling personnel varied systematically and consistently as a function of insect development. A method to compensate for this type of error is also suggested.

Résumé

Le bout de branche de 45 cm prélevé à mi-couronne sur du sapin baumier et de l’épinette blanche est décrit en termes de surface, poids frais et densité des bourgeons. Le poids frais est proposé comme étant l’unité la plus utile pour l’expression de la densité des populations de la tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clem.), à tous les stades du développement. Ceci est particulièrement approprié lors de la comparaison des niveaux de populations entre les deux essences hôtes, ou entre des endroits ayant des conditions de feuillage différentes.

Les changements de distribution de la tordeuse des bourgeons de l’épinette au sein de la couronne du sapin baumier au cours de son cycle vital ont été observés. Des facteurs de correction permettant de compenser pour ces changements dans l’estimation des niveaux de population à l’aide de bouts de branches de 45-cm ont été développés pour le sapin baumier et l’épinette blanche.

Le taux d’erreur encouru par le personnel dans la détection des larves de cet insecte sur le feuillage des deux essences varie selon le stade de développement. Un facteur de correction pour ce type d’erreur dans l’estimation de la densité est aussi proposé.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

References

Allen, D.C., Dorais, L., and Kettela, E.G.. 1984. Survey and detection. pp. 22–36 in Managing the Spruce Budworm in Eastern North America. Spruce Budworms Handbook. USDA For. Serv. Agric. Handb. 620.Google Scholar
Bean, J.L., and Batzer, H.O.. 1957. Mean head width for spruce budworm larval instars in Minnesota and associated data. J. econ. Ent. 50: 499.Google Scholar
Dobesberger, E.J., and Lim, K.P.. 1983. Required sample size for early instar larvae of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), in Newfoundland. Can. Ent. 115: 15231527.CrossRefGoogle Scholar
Duncan, D.B. 1955. Multiple range and multiple-F tests. Biometrics 11: 141.CrossRefGoogle Scholar
Eidt, D.C. 1969. Orientation of spruce budworm hatchlings. Can. Ent. 101: 10051006.CrossRefGoogle Scholar
Gujarati, D. 1970. Use of dummy variables in testing for equality between sets of coefficients in linear regressions: a generalisation. Am. Statistician 24: 1822.Google Scholar
Hardy, Y., Auger, M., and Caron, M.. 1976. Etude du développement de la tordeuse des bourgeons de l'épinette. Serv. Ent. Pathol. Qué. Minist. Terres For. Bull. Tech. 2. 4 pp.Google Scholar
Lethiecq, J.-L., and Régnière, J.. 1988. Comparative description of the physical environment and vegetation of six sites used by the Canadian Forestry Service in the study of spruce budworm population dynamics. Inf. Rep. LAU-X-83. Laurentian Forestry Centre, For. Can., Sainte-Foy, Qué. 46 pp.Google Scholar
McGugan, B.M. 1954. Needle-mining habits and larval instars of the spruce budworm. Can. Ent. 86: 439454.CrossRefGoogle Scholar
Miller, C.A., and Kettela, E.G.. 1972. An additional note on sampling overwintering spruce budworm larvae. Inf. Rep. M34. Can. For. Serv.—Maritimes, Fredericton N.B.13 pp.Google Scholar
Miller, C.A., Kettela, E.G., and McDougall, G.A.. 1971. A sampling technique for overwintering spruce budworm and its applicability to population surveys. Inf. Rep. M-X-25. Can. For. Serv.—Maritimes, Fredericton, N.B.11 pp.Google Scholar
Miller, C.A., Kettela, E.G., and McDougall, G.A.. 1972. Sampling methods in spruce budworm surveys. Can. For. Serv. Bi-Mon. Res. Notes 28: 31.Google Scholar
Moody, B.H., and Otvos, I.S.. 1980. Distribution of hibernating spruce budworm larvae within crowns of balsam fir trees in Newfoundland. Inf. Rep. N-X-182. Newfoundland Forest Res. Cent., Can. For. Serv., St-John's, Nfld.21 pp.Google Scholar
Morris, R.F. 1955. The development of sampling techniques for forest insect defoliators with particular reference to the spruce budworm. Can. J. Zool. 33: 225294.CrossRefGoogle Scholar
Piene, H., and MacLean, D.A.. 1984. An evaluation of growth response of young, spaced balsam fir to 3 years of spruce budworm spraying with Bacillus thuringiensis. Can. J. For. Res. 14: 404411.CrossRefGoogle Scholar
Régnière, J. 1983. An oviposition model for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 115: 13711382.CrossRefGoogle Scholar
Régnière, J., and Fletcher, R.M.. 1983. Direct measurement of spruce budworm (Lepidoptera: Tortricidae) larval dispersal in forest stands. Environ. Ent. 12: 15321538.CrossRefGoogle Scholar
Régnière, J., and Sanders, C.J.. 1983. Optimal sample size for the estimation of spruce budworm (Lepidoptera: Tortricidae) populations on balsam fir and white spruce. Can. Ent. 115: 16211626.CrossRefGoogle Scholar
Sanders, C.J. 1980. A summary of current techniques used for sampling spruce budworm populations and estimating defoliation in eastern Canada. Inf. Rep. O-X-306. Great Lakes Forestry Cent., Can. For. Serv., Sault Ste. Marie, Ont.33 pp.Google Scholar
Wellington, W.G. 1948. The light reactions of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). Can. Ent. 80: 5682.CrossRefGoogle Scholar
Wellington, W.G. 1949. The effects of temperature and moisture upon the behaviour of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). Sci. Agric. 29: 202215.Google Scholar
Wellington, W.G. 1950. Effects of radiation on the temperatures of insectan habitats. Sci. Agric. 30: 209234.Google Scholar
Wellington, W.G., and Henson, W.R.. 1947. Note on the effects of physical factors on the spruce budworm, Choristoneura fumiferana (Clem.). Can. Ent. 79: 168170.CrossRefGoogle Scholar
Wilson, L.F. 1959. Branch “tip” sampling for determining abundance of spruce budworm egg masses. J. econ. Ent. 52: 618621.Google Scholar
Wilson, L.F., and Bean, J.L.. 1963. Site of spruce budworm egg masses on their preferred hosts in the lake states. J. econ. Ent. 56: 574578.CrossRefGoogle Scholar