Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T21:03:55.706Z Has data issue: false hasContentIssue false

Plant vascular system-feeding Psyllidae (Hemiptera) and Nematoda genomes encode family 12 glycosyl hydrolases

Published online by Cambridge University Press:  15 April 2019

Richard W. Jones*
Affiliation:
United States Department of Agriculture-Agricultural Research Service, Genetic Improvement of Fruits and Vegetables Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland, 20705, United States of America
*
Corresponding author: (e-mail: [email protected])

Abstract

Insect-encoded cellulolytic plant cell wall hydrolases have thus far been found mostly from glycosyl hydrolase family 5, 9, 10, and 45. We now report the first evidence for genomic encoding of family 12 glycosyl hydrolases in vascular feeding Psyllidae (Hemiptera) and Nematoda. The genes were identified in three psyllids (Acanthocasuarina muellerianae Taylor, Pachypsylla venusta (Osten-Sacken), and Diaphorina citri Kuwayama) and a root tip feeding dagger nematode (Xiphinema index Thorne and Allen; Dorylaimida: Longidoridae). While the final gene products were highly similar, the genomic intron structure varied, having a 2 kB intron in P. venusta, a 283 base-pair intron in D. citri, and no intron in X. index. Endoglucanase activity was demonstrated using the D. citri genes in an Agrobacterium Conn (Rhizobiaceae) infiltration-based plant expression system. The presence of family 12 endoglucanases in this set of insects suggests a specific role in facilitating feeding on vascular tissue.

Type
Physiology, Biochemistry, Development, and Genetics–NOTE
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
© Entomological Society of Canada 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Mark Rheault

References

Calderon-Cortes, N., Quesada, M., Watanabe, H., Cano-Camacho, H., and Oyama, K. 2012. Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annual Review of Ecology, Evolution and Systematics, 43: 4571.CrossRefGoogle Scholar
Costanzo, S., Ospina-Giraldo, M.D., Deahl, K., Baker, C., and Jones, R.W. 2006. Gene duplication event in family 12 glycosyl hydrolase from Phytophthora spp. Fungal Genetics and Biology, 43: 707714.CrossRefGoogle ScholarPubMed
Costanzo, S., Ospina-Giraldo, M.D., Deahl, K., Baker, C., and Jones, R.W. 2007. Alternate intron processing of family 5 endoglucanase transcripts from the genus Phytophthora. Current Genetics, 52 115123.CrossRefGoogle ScholarPubMed
Eyun, S., Wang, H., Pauchet, Y., ffrench-Constant, R.H., Benson, A.K., Valencia-Jiménez, A., et al. 2014. Molecular evolution of glycoside hydrolase genes in the western corn rootworm (Diabrotica virgifera virgifera). Public Library of Science One, 9: e94052.Google Scholar
Gebruers, K., Debyser, W., Goesaert, H., Proost, P., Van Damme, J., and Delcour, J.A. 2001. Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochemistry Journal, 353: 239244.CrossRefGoogle ScholarPubMed
Houterman, P., Speijer, D., Dekker, H., De Koster, C., Cornelissen, B., and Rep, M. 2007. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Molecular Plant Pathology, 8: 215221.CrossRefGoogle ScholarPubMed
Jones, R.W. 2012. Multiple copies of genes encoding XEGIPs are harbored in an 85-kB region of the potato genome. Plant Molecular Biology Reporter, 30: 10401046.CrossRefGoogle Scholar
Jones, R.W. 2016. Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production. Journal of Microbiological Methods, 120: 6567.CrossRefGoogle ScholarPubMed
Kooij, P.W., Pullens, J.W.M., Boomsma, J.J., and Schiott, M. 2016. Ant mediated redistribution of a xyloglucanase enzyme in fungus gardens of Acromyrmex echinatior. BMC Microbiology, 16: 81.CrossRefGoogle ScholarPubMed
Oldach, K., Peck, D., Nair, R.M., Sokolova, M., Harris, J., Bogacki, P., and Ballard, R. 2014. Genetic analysis of tolerance to the root lesion nematode Pratylenchus neglectus in the legume Medicago littoralis. BMC Plant Biology, 14: 100.CrossRefGoogle ScholarPubMed
Padilla-Hurtado, B., Flórez-Ramos, C., Aguilera-Gálvez, C., Medina-Olaya, J., Ramírez-Sanjuan, A., Rubio-Gómez, J., and Acuña-Zornosa, R. 2012. Cloning and expression of an endo-1, 4-b-xylanase from the coffee berry borer, Hypothenemus hampei. BMC Research Notes, 5: 23.CrossRefGoogle ScholarPubMed
Park, Y. and Cosgrove, D. 2012. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiology, 158: 19331943.CrossRefGoogle ScholarPubMed
Pauchet, Y. and Heckel, D.G. 2013. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proceedings of the Royal Society B, 280: 1021.CrossRefGoogle ScholarPubMed
Pauchet, Y., Saski, C.A., Feltus, F.A., Luyten, I., Quesneville, H., and Heckel, D.G. 2014. Studying the organization of genes encoding plant cell wall degrading enzymes in Chrysomela tremula provides insights into a leaf beetle genome. Insect Molecular Biology, 23: 286300.Google ScholarPubMed
Payan, F., Leone, P., Porciero, S., Furniss, C., Tahir, T., Williamson, G., et al. 2004. The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. Journal of Biological Chemistry, 279: 3602936037.CrossRefGoogle ScholarPubMed
Shelomi, M., Heckel, D.G., and Pauchet, Y. 2016. Ancestral gene duplication enabled the evolution of multifunctional cellulases in stick insects (Phasmatodea). Insect Biochemistry and Molecular Biology, 71: 111.CrossRefGoogle Scholar
Shelomi, M., Watanabe, H., and Arakawa, G. 2014. Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. Journal of Insect Physiology, 60: 2530.CrossRefGoogle ScholarPubMed
Sloan, D.B., Nakabachi, A., Richards, S., Qu, J., Murali, S.C., Gibbs, R.A., and Moran, N.A. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Molecular Biology and Evolution, 31: 857871.CrossRefGoogle ScholarPubMed
Taylor, G.S., Jennings, J.T., Purcell, M.F., and Austin, A.D. 2011. A new genus and ten new species of jumping plant lice (Hemiptera: Triozidae) from Allocasuarina (Casuarinaceae) in Australia. Zootaxa, 3009: 145.CrossRefGoogle Scholar
Wang, H. and Jones, R.W. 1995. Cloning, characterization and functional expression of an endoglucanase-encoding gene from the phytopathogenic fungus Macrophomina phaseolina. Gene, 158: 125128.CrossRefGoogle ScholarPubMed
Watanabe, H., Noda, H., Tokuda, G., and Lo, N. 1998. A cellulase gene of termite origin. Nature, 394: 330331.CrossRefGoogle ScholarPubMed
Watanabe, H. and Tokuda, G. 2010. Cellulolytic systems in insects. Annual Review of Entomology, 55: 609632.CrossRefGoogle ScholarPubMed
Willis, J.D., Oppert, B., Oppert, C., Klingeman, W.E., and Jurat-Fuentes, J.L. 2011. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Insect Physiology, 57: 300306.CrossRefGoogle Scholar