Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:30:19.125Z Has data issue: false hasContentIssue false

Phytoplasma diseases and their relationships with insect and plant hosts in Canadian horticultural and field crops

Published online by Cambridge University Press:  02 April 2012

Chrystel Y. Olivier*
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
D. Thomas Lowery
Affiliation:
Summerland Research Centre, Agriculture and Agri-Food Canada, Highway 97, Summerland, British Columbia, Canada V0H 1Z0
Lorne W. Stobbs
Affiliation:
Vineland Research Centre, Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, Vineland, Ontario, Canada L0R 2E0
*
2Corresponding author (e-mail: [email protected]).

Abstract

Phytoplasmas are bacterial plant pathogens consisting of more than 50 phylogenetic groups that cause devastating diseases in various crops worldwide. They are obligate parasites restricted to the phloem tissue of the host plant and are transmitted from plant to plant mostly by leafhoppers (Hemiptera: Cicadellidae). They reproduce within the tissues of their insect vectors and are transferred in the salivary secretions to new host plants during feeding. Phytoplasma epidemiology involves a tritrophic relationship between the pathogen and usually several hosts and vectors. The host-plant range depends on the number of vectors, their feeding habits, and their dispersal pattern. Interactions between phytoplasmas and their vector hosts are complex and influenced by insects' vectoring abilities and the consequences of infection for vectors. In Canada, seven phytoplasma taxa have been detected in various crops. Aster yellows, the primary vector of which is the leafhopper Macrosteles quadrilineatus (Forbes), is the most common and widespread. X-disease, transmitted by at least eight leafhopper species, is economically damaging to all cultivated species of Prunus L. (Rosaceae). Clover proliferation, also transmitted by M. quadrilineatus, is the causal agent of important diseases such as clover proliferation and alfalfa witches' broom. Ash yellows and pear decline have caused economic problems for several decades, while bois noir, a quarantinable disease in Canada, was detected in Ontario and British Columbia for the first time only recently. Because of their cryptic nature, phytoplasmas are difficult to manage; quarantine measures and insecticide sprays remain the most common control measures. However, integrated pest management techniques using beneficial insects, biotechnology, and plant resistance are emerging.

Résumé

Les phytoplasmes sont des parasites stricts du phloème des plantes, responsables de plus de 300 maladies à travers le monde. Les phytoplasmes sont transmis par des hémiptères phloémophages, principalement des cicadelles (Hemiptera : Cicadellidae). Ils se reproduisent dans les organes de leurs insectes vecteurs et sont transmis aux plantes avec les sécretions salivaires de ces mêmes insectes. Les maladies à phytoplasmes sont les produits de relations tritrophiques entre les phytoplasmes et souvent, plusieurs plantes hôtes et insectes vecteurs. La gamme d'hôtes des phytoplasmes dépend du nombre de vecteurs, de leurs habitudes alimentaires et de leur capacité de dissémination. Les relations entre les phytoplasmes et leurs vecteurs sont complexes et dépendent de la capacité vectrice des insectes et des conséquences de l'infection du phytoplasme sur l'insecte vecteur. Au Canada, sept taxons ont été identifiés dans les grandes cultures et en horticulture, celui de la jaunisse de l'aster associé à l'insecte vecteur Macrosteles quadrilineatus (Forbes), étant le plus commun et le plus répandu. La maladie X du pêcher est transmise par au moins huit espèces de cicadelles et cause des dégats importants à toutes les espèces du genre Prunus L. (Rosaceae). Le phytoplasme de la prolifération du trèfle, transmise par M. quadrilineatus, est associé à des maladies économiquement importantes telles que la prolifération du trèfle et le balai de sorcière chez la luzerne. La jaunisse du frêne et le dépérissement du poirier continuent de causer des dégats économiques importants en Amérique du Nord, tandis que le bois noir, une maladie de quarantaine au Canada, a été détecté récemment dans des vignobles de la Colombie britannique et de l'Ontario. Les maladies à phytoplasmes sont difficiles à contrôler et les moyens de lutte les plus utilisés actuellement restent les mesures de quarantaine et les pulvérisations d'insecticides pour réduire les populations d'insectes vecteurs. Cependant, de nouvelles techniques de lutte, comprenant la lutte intégrée, les biotechnologies et la résistance des plantes, sont en cours de développement.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrios, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, Massachusetts.Google Scholar
Akhtar, K.P., Shah, T.M., Atta, B.M., Dickinson, M., Jamil, F.F., Haq, M.A., Hameed, S., and Iqbal, M.J. 2008. Natural occurrence of phytoplasma associated with chickpea phyllody disease in Pakistan — a new record. Plant Pathology, 57: 771. doi:10.1111/j.1365-3059.2007.01800.x.Google Scholar
Alma, A., Bosco, D., Danielli, A., Bertaccini, A., Vibio, M., and Arzone, A. 1997. Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball reared on healthy plants. Insect Molecular Biology, 6: 115121. PMID:9099575 doi:10.1111/j.1365-2583.1997.tb00079.x.CrossRefGoogle ScholarPubMed
Alma, A., Marzachi, C., d'Aquilio, M., and Bosco, D. 2000. Cyclamen (Cyclamen persicum L.): a dead-end host species for 16Sr-IB and -IC subgroup phytoplasmas. The Annals of Applied Biology, 136: 173178. doi:10.1111/j.1744-7 348.2000.tb00023.x.CrossRefGoogle Scholar
Alma, A., Palermo, S., Boccardo, G., and Conti, M. 2001. Transmission of chrysanthemum yellows, a subgroup 16SrI-B phytoplasma, to grapevine by four leafhopper species. Journal of Plant Pathology, 83: 181187.Google Scholar
Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R., and Daszak, P. 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19: 535544. doi:10.1016/j.tree.2004. 07.021.CrossRefGoogle ScholarPubMed
Angelini, E., Negrisolo, E., Clair, D., Borgo, M., and Boudon-Padieu, E. 2003. Phylogenetic relationships among flavescence dorée isolates and related phytoplasmas determined by heteroduplex mobility assay and sequences of ribosomal and non-ribosomal DNA. Plant Pathology, 52: 663672. doi:10.1046/j.1365-3059.2003.00917.x.CrossRefGoogle Scholar
Arocha, Y., Antesana, O., Montellano, E., Franco, P., Plata, G., and Jones, P. 2007 a. Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. International Journal of Systematic and Evolutionary Microbiology, 57: 17041710. PMID: 17684241 doi:10.1099/ijs.0.64851-0.CrossRefGoogle ScholarPubMed
Arocha, Y., Pinol, B., Picornell, B., Almeida, R., and Jones, P. 2007 b. Broad bean and sweet pepper: two new hosts associated with Candidatus phytoplasma asteris (16SrI phytoplasma group) in Cuba. Plant Pathology, 56: 345. doi: 10.1111/j.1365-3059.2007.01518.x.CrossRefGoogle Scholar
Babaie, G., Khatabi, B., Bayat, H., Rastgou, M., Hosseini, A., and Salekdeh, G.H. 2007. Detection and characterization of phytoplasmas infecting ornamental and weed plants in Iran. Journal of Phytopathology, 155: 368372. doi: 10.1111/j.1439-0434.2007.01247.x.CrossRefGoogle Scholar
Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., et al. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology, 188: 36823696. PMID:16672622 doi:10.1128/JB.188.10.3682-3696.2006.CrossRefGoogle ScholarPubMed
Bai, X., Correa, V.R., Toruño, T.Y., Ammar, D., Kamoun, S., and Hogenhout, S.A. 2009. AYWB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant—Microbe Interactions, 22: 1830. PMID:19061399 doi:10.1094/MPMI-22-1-0018.CrossRefGoogle ScholarPubMed
Bailey, K.L., Gossen, B.D., Gugel, R.K., and Morrall, R.A.A. 2003. Diseases of field crops in Canada. 3rd ed. The Canadian Phytopathological Society, Saskatoon, Saskatchewan.Google Scholar
Baker, W.L. 1949. Studies on the transmission of the virus causing phloem necrosis of American elm with notes on the biology of its insect vector. Journal of Economic Entomology, 42: 729732.Google Scholar
Bantarri, E.E. 1966. Grass hosts of aster yellows virus. Plant Disease Reporter, 50: 1721.Google Scholar
Bantarri, E.E., and Moore, M.B. 1960. Transmission of the aster yellows virus to barley. Plant Disease Reporter, 44: 154.Google Scholar
Bantarri, E.E., Orr, P.H., and Preston, D.A. 1990. Purple top as a cause of potato chip discoloration. Transactions of the American Society of Agricultural Engineers, 33: 221226.CrossRefGoogle Scholar
Barnett, D.E. 1977. A revision of the Nearctic species of the genus Scaphoideus (Homoptera: Cicadellidae). Transactions of the American Entomological Society, 102: 485593.Google Scholar
Batlle, A., Altabella, N., Sabatė, J., and Laviña, A. 2008. Study of the transmission of stolbur phytoplasma to different crop species, by Macro-steles quadripunctulatus. The Annals of Applied Biology, 152: 235242. doi:10.1111/j.1744-7348.2007.00210.x.CrossRefGoogle Scholar
Beanland, L., and Wolf, T. 2003. Possible insect vectors of North American grapevine yellows phytoplasma in Virginia. In Proceedings of the 14th Conference of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine, Locorotondo, Italy, 12–17 September 2003. pp. 6465.Google Scholar
Beanland, L., Hoy, C.W., Miller, S.A., and Nault, L.R. 1999. Leafhopper transmission of the aster yellows phytoplasma: Does sex matter? Environmental Entomology, 28: 11011106.CrossRefGoogle Scholar
Beanland, L., Hoy, C.W., Miller, S.A., and Nault, L.R. 2000. Influence of aster yellows phytoplasma on the fitness of the aster leafhopper (Hemiptera: Cicadellidae). Annals of the Entomological Society of America, 93(2): 271276. doi:10.1603/0013-8746(2000)093[0271:IOAYPO] 2.0.CO;2.CrossRefGoogle Scholar
Beanland, L., Noble, R., and Wolf, T.K. 2006. Spatial and temporal distribution of North American grapevine yellows disease and of potential vectors of the causal phytoplasmas in Virginia. Environmental Entomology, 35: 332344.CrossRefGoogle Scholar
Beirne, B.P. 1956. Leafhoppers (Homoptera: Cicadellidae) of Canada and Alaska. The Canadian Entomologist. LXXXVIII (Supplement 2).Google Scholar
Bertaccini, A. 2007. Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience, 12: 673689. PMID:17127328 doi: 10.2741/2092.CrossRefGoogle ScholarPubMed
Bertaccini, A., Mittempergher, L., and Vibio, N. 1996. Identification of phytoplasmas associated with a decline of European hackberry (Celtis australis). The Annals of Applied Biology, 128: 245253. doi:10.1111/j.1744-7348.1996.tb07320.x.CrossRefGoogle Scholar
Bertaccini, A., Botti, S., Martini, M., and Kaminska, M. 2002. Molecular evidence for mixed phytoplasma infection in lily plants. Acta Horticulturae, 568: 3541.CrossRefGoogle Scholar
Bertaccini, A., Fránová, J., Botti, S., and Tabanelli, D. 2005. Molecular characterization of phytoplasmas in lilies with fasciation in the Czech Republic. FEMS Microbiology Letters, 249: 7985. PMID:15979819 doi:10.1016/j.femsle.2005.06.001.CrossRefGoogle ScholarPubMed
Bertin, S., Guglielmino, C.R., Karam, N., Gomulski, L.M., Malacrida, A.R., and Gasperi, G. 2007. Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica, 131(3): 275285. PMID:17242963 doi:10.1007/s10709-006-9137-y.CrossRefGoogle ScholarPubMed
Bertolini, E., Torres, E., Olmos, A., Martin, M.P., Bertaccini, A., and Cambra, M. 2007. Co-operational PCR coupled with dot blot hybridization for detection and 16SrX grouping of phytoplasmas. Plant Pathology, 56: 677682. doi:10.1111/j.1365-3059.2007.01601.x.CrossRefGoogle Scholar
Bisognin, C., Schneider, B., Salm, H., Grando, M.S., Jarausch, W., Moll, E., and Seemüller, E. 2008. Apple proliferation resistance in apomictic rootstocks and its relationship to phytoplasma concentration and simple sequence repeat genotypes. Phytopathology, 98: 153158. PMID: 18943191 doi:10.1094/PHYTO-98-2-0153.Google Scholar
Blomquist, C.L. 2002. Aster yellows and beet leafhopper-transmitted virescence agent yellows. In Compendium of umbelliferous crop diseases. Edited by Davis, R.M. and Raid, R.N.. American Phytopathological Society, St. Paul, Minnesota. pp. 5859.Google Scholar
Bosco, D., Minucci, C., Boccardo, G., and Conti, M. 1997. Differential acquisition of chrys anthemum yellows phytoplasma by three leaf-hopper species. Entomologia Experimentalis et Applicata, 83: 219224. doi:10.1046/j.1570-7458.1997.00175.x.CrossRefGoogle Scholar
Boudon-Padieu, E. 1996. Le bois noir, des inconnues sont levees, mais d'autres demeurent. Phytoma, 488: 1013.Google Scholar
Boudon-Padieu, E. 2005. Phytoplasmas associated to grapevine yellows and potential vectors. Bulletin de l'Organisation Internationale de la Vigne et du Vin, 79: 299320.Google Scholar
Bressan, A., and Purcell, A.H. 2005. Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Disease, 89: 11211124. doi: 10.1094/PD-89-1121.Google Scholar
Bressan, A., Clair, D., Sémétey, O., and Boudon-Padieu, E. 2006 a. Insect injection and artificial feeding bioassays to test the vector specificity of flavescence dorée phytoplasma. Phytopathology, 96: 790796. PMID:18943154 doi:10.1094/PHYTO-96-0790.CrossRefGoogle ScholarPubMed
Bressan, A., Larrue, J., and Boudon-Padieu, E.B. 2006 b. Patterns of phytoplasma-infected and infective Scaphoideus titanus leafhoppers in vineyards with high incidence of flavescence dorée. Entomologia Experimentalis et Applicata, 119: 6169. doi:10.1111/j.1570-7458.2006.00391.x.Google Scholar
Cambra, N., Capote, N., Myrta, A., and Llàcer, G. 2006. Plum pox virus and the estimated costs associated with Sharka disease. EPPO (European and Mediterranean Plant Protection) Bulletin, 36: 202204. doi:10.1111/j.1365-2338.2006.01027.x.Google Scholar
Carraro, L., Ferrini, F., Ermacora, P., Loi, N., Martini, M., and Osler, R. 2004. Macropsis mendax as a vector of elm yellows phytoplasma of Ulmus species. Plant Pathology, 53: 9095. doi:10.1111/j.1365-3059.2004.00940.x.CrossRefGoogle Scholar
Castro, V., Rivera, C., Isard, S.A., Gamez, R., Fletcher, J., and Irwin, M.E. 1992. The influence of weather and microclimate on Dalbulus maidis (Homoptera: Cicadellidae) flight activity and the incidence of diseases within maize and bean monocultures and bicultures in tropical America. The Annals of Applied Biology, 121: 469482. doi:10.1111/j.1744-7348.1992.tb03457.x.CrossRefGoogle Scholar
Caudwell, A. 1977. Les maladies dites “à mycoplasmes” des végétaux : biologie et étiologie. Bulletin Technique d'Information des Services Agricoles, 316: 6789.Google Scholar
Caudwell, A. 1990. Epidemiology and characterization of flavescence dorée (FD) and other grapevine yellows. Agronomie, 10: 655663. doi:10.1051/agro:19900806.CrossRefGoogle Scholar
Caudwell, A., Larrue, J., Kuszala, C., and Bachelier, J.C. 1971. Pluralité des jaunisses de la vigne. Annales de Phytopathologie, 12: 95105.Google Scholar
Chang, K.-F., Hwang, S.F., and Mirza, M. 1995. Mycoplasma-like organisms associated with phyllody of Brassica chinensis L. Journal of Plant Diseases and Protection, 102: 144150.Google Scholar
Chang, K.-F., Hwang, S.F., and Howard, R.J. 1996. First report of a yellows disease of German statice (Goniolimon tataricum) in Canada caused by a phytoplasma. Canadian Plant Disease Survey, 76: 1520.Google Scholar
Chang, K.-F., Howard, R.J., Blade, S.F., and Hwang, S.F. 2000. Survey of aster yellows of Echinacea in Alberta in 1999. Canadian Plant Disease Survey, 80: 8889.Google Scholar
Chang, K.-F., Hwang, S.-F., Khadhair, A.-H., Kawchuk, L.M., Howard, R.J., and Blade, S.F. 2004 a. Aster yellows phytoplasma associated with chai Hu plants in Canada. Journal of Plant Diseases and Protection, 111: 218224.Google Scholar
Chang, K.-F., Hwang, S.-F., Khadhair, A.-H., Kawchuk, L.M., and Howard, R. 2004 b. Detection and molecular characterization of an aster yellows phytoplasma in poker statice and Queen Anne's lace in Alberta, Canada. Microbiological Research, 159: 4350. PMID:15160606 doi:10.1016/j.micres.2004.01.014.Google Scholar
Chapman, R.K. 1973. Integrated control of aster yellows. Proceedings of the North Central Branch of the Entomological Society of America, 28: 7192.Google Scholar
Chaput, J., and Sears, M. 1998. The aster leafhopper and aster yellows. Ontario Ministry of Agriculture, Food and Rural Affairs Factsheet 98-057.Google Scholar
Chen, Y.D., and Chen, T.A. 1998. Expression of engineered antibodies in plants: a possible tool for spiroplasma and phytoplasma disease control. Phytopathology, 88: 13671371. PMID: 18944841 doi:10.1094/PHYTO.1998.88.12.1367.Google Scholar
Chiykowski, L.N. 1962. Clover phyllody virus in Canada and its transmission. Canadian Journal of Botany, 40: 397404. doi:10.1139/b62-040.CrossRefGoogle Scholar
Chiykowski, L.N. 1965. A yellows-type virus of alsike clover in Alberta. Canadian Journal of Botany, 43: 527536. doi:10.1139/b65-058.CrossRefGoogle Scholar
Chiykowski, L.N. 1967. Reaction of some wheat varieties to aster yellows virus. Canadian Journal of Plant Science, 47: 149151.CrossRefGoogle Scholar
Chiykowski, L.N. 1979. Athysanus argentarius, an introduced European leafhopper, as a vector of aster yellows in North America. Canadian Journal of Plant Pathology, 1: 3741.Google Scholar
Chiykowski, L.N. 1981. Epidemiology of diseases caused by leafhopper-borne pathogens. In Plant disease and vectors: Ecology and Epidemiology. Edited by Maramorosch, K. and Harris, K.F.. Academic Press, New York. pp. 106159.Google Scholar
Chiykowski, L.N., and Sinha, R.C. 1982. Herbaceous host plants of peach eastern X-disease agent. Canadian Journal of Plant Pathology, 4: 815.Google Scholar
Christensen, N.-M., Nicolaisen, M., Hansen, M., and Schulz, A. 2004. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant–Microbe Interactions, 17(11): 11751184. PMID:15553243 doi:10.1094/MPMI.2004.17.11.1175.Google Scholar
Christensen, N.M., Axelsen, K.B., Nicolaisen, M., and Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends in Plant Science, 10(11): 526535. PMID:16226054 doi:10.1016/j.tplants.2005.09.008.CrossRefGoogle ScholarPubMed
Ciancio, A., Musetti, R., and Loi, N. 2004. Atomic force microscopy of unculturable bacteria. In Current issues on multidisciplinary microscopy research and education. Formatex Book Series. Volume 2. pp. 101106.Google Scholar
Constable, F.E., Gibb, K.S., and Symons, R.H. 2003. Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology, 52: 267276. doi:10.1046/j.1365-3059.2003.00849.x.CrossRefGoogle Scholar
Cooley, D.R., Tattar, T.A., and Schieffer, J.T. 1992. Treatment of X-disease of peaches using oxytetracycline microinjection capsules. Hort-Science, 27: 235237.Google Scholar
Cutcliffe, J.A., and Thompson, L.S. 1977. Incidence of green petal disease in strawberry in Prince Edward Island, 1976. Canadian Plant Disease Survey, 57: 12.Google Scholar
d'Amelio, R., Marzachì, C., and Bosco, D. 2007. Double infection of ‘Candidatus Phytoplasma asteris’ and ‘Flavescence dorée’ phytoplasma in the vector Euscelidius variegatus. Bulletin of Insectology, 60: 223224.Google Scholar
Davies, D., Guise, C.M., Clark, M.F., and Adams, A.N. 1992. Parry's disease of pears is similar to pear decline and is associated with mycoplasma-like organisms transmitted by Cacopsylla pyricola. Plant Pathology, 41: 195203. doi:10.1111/j.1365-3059.1992.tb02338.x.CrossRefGoogle Scholar
Davis, R.E., and Sinclair, W.A. 1998. Phytoplasma identity and disease etiology. Phytopathology, 88: 13721376. PMID:18944842 doi:10.1094/PHYTO.1998.88.12.1372.Google Scholar
Davis, R.E., and Whitcomb, R.F. 1970. Evidence on possible mycoplasma etiology of aster yellows disease. I. Suppression of symptom development in plants by antibiotics. Infection and Immunity, 2: 201208 PMID:16557820.CrossRefGoogle ScholarPubMed
Davis, R.E., and Whitcomb, R.F. 1971. Mycoplasmas, rickettsiae and chlamydiae: possible relation to yellow's diseases and other disorders of plants and insects. Annual Review of Phytopathology, 9: 119153. doi:10.1146/annurev.py.09.090171.001003.Google Scholar
Davis, R.E., Lee, I.-M., Douglas, S.M., and Dally, E.L. 1990. Molecular cloning and detection of chromosomal and extrachromosomal DNA of the mycoplasmalike organism associated with little leaf disease in periwinkle (Catharanthus roseus). Molecular Plant Pathology, 80: 789793.Google Scholar
Davis, R.E., Jomantiène, R., Dally, E.L., and Wolf, T.K. 1998. Phytoplasmas associated with grapevine yellows in Virginia belong to group 16SrI, subgroup A (tomato big bud phytoplasma subgroup), and group 16SrIII, new subgroup I. Vitis, 37: 131137.Google Scholar
Del Serrone, P., Marzachi, C., Bragaloni, M., and Galeffi, P. 2001. Phytoplasma infection of tomato in central Italy. Phytopathologia Mediterranea, 40: 137142.Google Scholar
Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma or PLT group-like micro-organisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or Paulownia witches' broom. Annals of the Phytopathological Society of Japan, 33: 259266.Google Scholar
Ducom, L. 1999. La flavescence doré : une maladie au consequences irreversibles. Le Paysan Francais, 975: 2933.Google Scholar
Elliot, B., and Northover, P. 2007. 2007 Manitoba vegetables insect and disease situation in review. Manitoba Weekly Vegetable Report, No. 15, November 2007, p. 17.Google Scholar
Firrao, G., Carraro, L., Gobbi, E., and Locci, R. 1996. Molecular characterization of a phytoplasma causing phyllody in clover and other herbaceous hosts in northern Italy. European Journal of Plant Pathology, 102: 817822. doi:10.1007/BF01877050.CrossRefGoogle Scholar
Firrao, G., Gibb, K., and Streten, C. 2005. Short taxonomic guide to the genus ‘Candidatus Phytoplasma. Journal of Plant Pathology, 87: 249263.Google Scholar
Fontaniella, B., Vicente, C., Legaz, M.E., de Armas, R., Rodríguez, C.W., Martínez, M., et al. 2003. Yellow leaf syndrome modifies the composition of sugarcane juice in polysacharides, phenols and polyamines. Plant Physiology and Biochemistry, 41(11–12): 10271036. doi:10.1016/j.plaphy.2003.09.004.Google Scholar
Fránová, J., and Petrzik, K. 2008. Strawberry sterility — what is the causal agent(s)? Acta Horticulturae, 780: 2734.CrossRefGoogle Scholar
Fránová, J., Přibylová, J., and Petrzik, K. 2009. Purple coneflower with reddening and phyllody: a new host of clover phyllody phytoplasma. European Journal of Plant Pathology, 123: 8590. doi:10.1007/s10658-008-9320-3.CrossRefGoogle Scholar
Garcia-Salazar, C., Whalon, M.E., and Rahardja, U. 1991. Temperature-dependent pathogenicity of the X-disease mycoplasma-like organism to its vector: Paraphlesius irroratus (Homoptera: Cicadellidae). Environmental Entomology, 20: 179184.CrossRefGoogle Scholar
Ge, Q., and Maixner, M. 2003. Comparative experimental transmission of grapevine yellows phytoplasmas to plants and artificial feeding medium. In Proceedings of the 14th Conference of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine, Locorotondo, Italy, 12–17 September 2003. pp. 109110.Google Scholar
George, J.A. 1959. Note on Epigonatopus plesius (Fenton) (Hymenoptera: Dryinidae), a parasite of the six-spotted leafhopper, Macrosteles fascifrons (Stal), in Ontario. The Canadian Entomologist, 91: 256.CrossRefGoogle Scholar
Gilmer, R.M., and Blodgett, E.C. 1976. Virus diseases and non-infectious disorders of stone-fruits in North America. United States Department of Agriculture, Agriculture Handbook No. 437. pp. 145155.Google Scholar
Gilmer, R.M., Palmiter, D.H., Schaefers, G.A., and McEwen, F.L. 1966. Leafhopper transmission of X-disease virus of stone fruits in New York. New York State Agriculture Experimental Station Bulletin No. 813.Google Scholar
Goodwin, P.H., Mahuku, G.S., Liu, H., and Xue, B.G. 1999. Monitoring phytoplasma in populations of aster leafhoppers from lettuce fields using the polymerase chain reaction. Crop Protection (Guildford, Surrey), 18: 9199. doi:10.1016/S0261-2194(98)00093-3.CrossRefGoogle Scholar
Gourley, C.O. 1955. Green petal of strawberry in Nova Scotia. Plant Disease, 39: 808809.Google Scholar
Gourley, C.O., Bishop, G.W., and Craig, D.L. 1977. Susceptibility of some strawberry cultivars to green petal. Canadian Plant Disease Survey, 57: 129130.Google Scholar
Griffiths, H.M., Gundersen, D.E., Sinclair, W.A., Lee, I.-M., and Davis, R.E. 1994. Mycoplasma-like organisms from milkweed, goldenrod, and spirea represent two new 16S rRNA subgroups and three new strain subclusters related to X-disease MLOs. Canadian Journal of Plant Pathology, 16: 255355.Google Scholar
Griffiths, H.M., Sinclair, W.A., Smart, C.D., and Davis, R.E. 1999. The phytoplasma associated with ash yellows and lilac witches'-broom: ‘Candidatus phytoplasma fraxini’. International Journal of Systematic Bacteriology, 49: 16051614 PMID:10555342.Google ScholarPubMed
Gundersen, D.E., Lee, I.-M., Schaff, D.A., Harrison, N.A., Chang, C.J., Davis, R.E., and Kingsbury, D.T. 1996. Genomic diversity and differentiation among phytoplasma strains in 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). International Journal of Systematic Bacteriology, 46: 6475 PMID:8573523.CrossRefGoogle ScholarPubMed
Guo, Y.H., Walla, J.A., Cheng, Z.M., and Lee, I.-M. 1996. X-disease confirmation and distribution in chokecherry in North Dakota. Plant Disease, 80: 95102.CrossRefGoogle Scholar
Hagel, G.T., Landis, B.J., and Ahrens, M.C. 1973. Aster leafhopper: source of infestation, host plant preference and dispersal. Journal of Economic Entomology, 66: 877881.CrossRefGoogle Scholar
Hamilton, K.G.A. 1998. The species of the North American leafhoppers Ceratagallia Kirkaldy and Aceratagallia Kirkaldy (Rhynchota: Homoptera: Cicadellidae). The Canadian Entomologist, 130: 427490.CrossRefGoogle Scholar
Hanboonsong, Y., Choosai, C., Panyim, S., and Damak, S. 2002. Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Molecular Biology, 11: 97103. PMID: 11841507 doi:10.1046/j.0962-1075.2001.00314.x.CrossRefGoogle ScholarPubMed
Harrison, N.A., Legard, D.E., Di Bonito, R., and Richardson, P.A. 1997. Detection and differentiation of phytoplasmas associated with disease of strawberry in Florida. Plant Disease, 81: 230. doi:10.1094/PDIS.1997.81.2.230B.Google Scholar
Hibben, C.R., and Silverborg, S.B. 1978. Severity and causes of ash dieback. Journal of Arboriculture, 4: 274279.Google Scholar
Hibben, C.R., Sinclair, W.A., Davis, R.E., and Alexander, J.H. III., 1991. Relatedness of mycoplasmalike organisms associated with ash yellows and lilac witches'-broom. Plant Disease, 75: 12271230.CrossRefGoogle Scholar
Hill, G.T., and Sinclair, W.A. 2000. Taxa of leafhoppers carrying phytoplasmas at sites of ash yellows occurrence in New York State. Plant Disease, 84: 134138. doi:10.1094/PDIS.2000.84.2.134.CrossRefGoogle ScholarPubMed
Hiruki, C. 1999. Paulownia witches'-broom disease important in East Asia. Acta Horticulturae, 496: 6368.Google Scholar
Hiruki, C., and Chen, M.H. 1978. Faba bean yellows incited by the aster yellows agent. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Erste Abteilung Originale, Reihe A, Medizinische Mikrobiologie und Parasitologie, 241: 226227.Google Scholar
Hiruki, C., and Wang, K. 1999. Phytoplasma diseases of urban tree and shrub species in Western Canada. Acta Horticulturae, 496: 5561.CrossRefGoogle Scholar
Hiruki, C., and Wang, K. 2004. Clover proliferation phytoplasma: ‘Candidatus Phytoplasma trifolii’. International Journal of Systematic and Evolutionary Microbiology, 54: 13491353. PMID:15280313 doi:10.1099/ijs.0.02842-0.CrossRefGoogle ScholarPubMed
Hogenhout, S.A., Oshima, K., Ammar, D., Kakizawa, S., Kingdom, H.N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology, 9: 403423. PMID:18705857 doi:10.1111/j.1364-3703.2008.00472.x.CrossRefGoogle ScholarPubMed
Hollingsworth, C.R., Atkinson, L.M., Samac, D.A., Larsen, J.E., Motteberg, C.D., Abrahamson, M.D., Glogoza, P., and MacRae, I.V. 2008. Region and field level distributions of aster yellows phytoplasma in small grain crops. Plant Disease, 92: 623630. doi:10.1094/PDIS-92-4-0623.CrossRefGoogle ScholarPubMed
Horton, D.R. 1999. Monitoring of pear psylla for pest management decisions and research. Integrated Pest Management Reviews, 4: 120. doi:10.1023/A:1009602513263.CrossRefGoogle Scholar
Howard, F.W., and Oropezza, C. 1998. Organic mulch as a factor in the nymphal habitat of Myndus crudus (Hemiptera: Auchenorhyncha: Cixiidae). The Florida Entomologist, 81: 9297. doi:10.2307/3495999.CrossRefGoogle Scholar
Howard, F.W., Garland, J.A., and Seaman, W.L. 1994. Diseases and pests of vegetable crops in Canada. The Canadian Phytopathological Society and the Entomological Society of Canada, Ottawa, Ontario.Google Scholar
Hoy, C.W., Heady, S.E., and Koch, T.A. 1992. Species composition, phenology, and possible origins of leafhoppers (Cicadellidae) in Ohio vegetable crops. Journal of Economic Entomology, 85: 23362343.CrossRefGoogle Scholar
Hoy, C.W., Zhou, X., Nault, L.R., Miller, S.A., and Styer, J. 1999. Host plant, phytoplasma, and reproductive status effects on flight behavior of aster leafhopper (Homoptera: Cicadellidae). Annals of the Entomological Society of America, 92: 523528.Google Scholar
Hren, M., Boben, J., Rotter, A., Kralj, P., Gruden, K., and Ravnikar, M. 2007. Real-time PCR detection systems for Flavescence dorée and Bois noir phytoplasma in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathology, 56: 785796. doi: 10.1111/j.1365-3059.2007.01688.x.Google Scholar
Hwang, S.F., Chang, K.F., Howard, R.J., and Kawchuck, L.M. 1998. First report of a yellows disease of evening primrose (Oenothera biennis L.) and curled chervil (Anthriscus cerefolium L. Hoffm.) in Canada associated with phytoplasma infection. Journal of Plant Diseases and Protection, 105: 6470.Google Scholar
International Committee on Systematic Bacteriology, Subcommittee on the Taxonomy of Mollicutes. 1993. Minutes of the interim meetings, 1-2 August 1992, Ames, Iowa. International Journal of Systematic Bacteriology, 43: 394397.Google Scholar
International Research Programme on Comparative Mycoplasmology, Phytoplasma/Spiroplasma Working Team, Phytoplasma Taxonomy Group. 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology, 54: 12431255. PMID:15280299 doi:10.1099/ijs.0.02854-0.Google Scholar
Janke, J., von Bargen, S., Ulrich, C., Pestemer, W., Taye, T., Bandte, M., and Büttner, C. 2008. Studies on phyllody in Parthenium hysterophorus and detection of phytoplasma within important crops cultivated in Ethiopia. In Proceedings of Tropentag 2007 — Conference on International Research on food security, natural resource management and rural development, Curvillier Verlag Göttingen, Germany, November 2007. Plant protection session, Poster no. 11.Google Scholar
Jensen, D.D., Griggs, W.H., Gonzales, C.Q., and Schneider, H. 1964. Pear decline virus transmission by pear psylla. Phytopathology, 54: 13461351.Google Scholar
Jiang, H., Wei, W., Saiki, T., Kawakita, H., Watanabe, K., and Sato, M. 2004. Distribution patterns of mulberry dwarf phytoplasma in reproductive organs, winter buds, and roots of mulberry trees. Journal of General Plant Pathology, 70: 168173. doi:10.1007/s10327-004-0103-1.CrossRefGoogle Scholar
Johannesen, J., Lux, B., Michel, K., Seitz, A., and Maixner, M. 2008. Invasion biology and host specificity of the grapevine yellows disease vector Hyalesthes obsoletus in Europe. Entomologia Experimentalis et Applicata, 126: 217227. doi:10.1111/j.1570-7458.2007.00655.x.CrossRefGoogle Scholar
Jomantiène, R., and Davis, R.E. 2005. Apple sessile leaf: a new disease associated with a “Candidatus Phytoplasma asteris” subgroup 16SrI-B phytoplasma in Lithuania. Plant Pathology, 54: 237. doi:10.1111/j.1365-3059.2005.01169.x.Google Scholar
Jomantiène, R., Davis, R.E., Dally, E.L., Maas, J., and Postman, J. 1997. Evidence that Fragaria multicipita is a phytoplasma-diseased Fragaria. Phytopathology, 87: S49.Google Scholar
Jomantiène, R., Davis, R.E., Maas, J., and Dally, E.L. 1998. Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. International Journal of Systematic Bacteriology, 48: 269277 PMID:9542097.CrossRefGoogle ScholarPubMed
Jomantiene, R., Maas, J.L., Dally, E.L., Davis, R.E., and Postman, J.D. 1999. First report of clover proliferation phytoplasma in strawberry. Plant Disease, 83: 967. doi:10.1094/PDIS.1999.83.10.967C.CrossRefGoogle ScholarPubMed
Jomantiène, R., Davis, R.E., Antoniuk, L., and Staniulis, J. 2000. First report of phytoplasmas in soybean, alfalfa and Lupinus sp. in Lithuania. Plant Disease, 84: 198. doi:10.1094/PDIS.2000.84.2.198C.CrossRefGoogle ScholarPubMed
Jomantiène, R., Maas, J.L., Dally, E.L., and Davis, R.E. 2002. Phytoplasmas in strawberry with fruit phyllody. Acta Horticulturae, 567: 635637.Google Scholar
Jones, P., and Arocha, Y. 2006. A natural infection of hebe is associated with an isolate of ‘Candidatus Phytoplasma asteris’ causing a yellowing and little-leaf disease in the UK. Plant Pathology, 55: 821. doi:10.1111/j.1365-3059.2006.01479.x.Google Scholar
Jović, J., Cvrković, T., Mitrović, M., Krnjanjić, S., Redinbaugh, M.G., Pratt, R.C., Gingery, R.E., Hogenhout, S.A., and Toševski, I. 2007. Roles of stolbur phytoplasma and Reptalus panzeri (Cixiinae, Auchenorrhyncha) in the epidemiology of maize redness in Serbia. European Journal of Plant Pathology, 118: 8589 doi:10.1007/s10658-007-9105-0.CrossRefGoogle Scholar
Kamińska, M., and Śliwa, H. 2005. Detection of ‘Candidatus Phytoplasma asteris’ in ashleaf maple trees with shoot proliferation and decline. Journal of Fruit and Ornamental Plant Research, 13: 123134.Google Scholar
Kamińska, M., Podwyszyska, M., and Śliwa, H. 2005. Phytoplasma detection in rose shoots propagated in vitro. Acta Societatis Botanicorum Poloniae, 74: 181186.CrossRefGoogle Scholar
Kawakita, H., Saiki, T., Wei, W., Mitsuhashi, W., Watanabe, K., and Sato, M. 2000. Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology, 90: 909914. PMID:18944513 doi:10.1094/PHYTO.2000.90.8.909.Google Scholar
Khadhair, A.H., and Hiruki, C. 1995. The molecular genetic relatedness of willow witches'-broom phytoplasma to the clover proliferation group. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences, 71: 145147. doi:10.2183/pjab.71.145.Google Scholar
Khadhair, A.-H., Hiruki, C., and Hwang, S.F. 1997 a. Molecular detection of alfalfa witches-broom phytoplasma in four leafhopper species associated with infected alfalfa plants. Micro-biological Research, 152: 269275.CrossRefGoogle Scholar
Khadhair, A.-H., Hwang, S.F., Chang, K.F., and Howard, R.J. 1997 b. Molecular identification of aster yellows phytoplasmas in purple coneflower and monarda based on PCR amplification and RFLP analysis of 16SrDNA sequences. Zeits-chrift für Pflanzenkrankheiten und Pflanzenschutz, 104: 403410.Google Scholar
Khadhair, A.-H., Kawchuk, L.M., Taillon, R.C., and Botar, G. 1998. Detection and molecular characterization of an aster yellows phytoplasma in parsley. Canadian Journal of Plant Pathology, 20: 5561.Google Scholar
Khadhair, A.-H., Tewari, J.P., Howard, R.J., and Choban, B. 2001. Association of aster yellows and witches'-broom phytoplasmas with several hosts in Alberta. Canadian Journal of Plant Pathology, 23: 185. PMID:11572458 doi:10.1078/0944-5013-00100.Google Scholar
Khadhair, A.-H., Duplessis McAllister, P., Ampong-Nyarko, K., and Bains, P. 2003. Transmission and characterization of phytoplasma diseases associated with infected potato cultivars in Alberta. Acta Horticulturae, 619: 167176.CrossRefGoogle Scholar
Khadhair, A.-H., Hiruki, C., and Deyholos, M. 2008. Molecular characterization of aster yellows phytoplasma associated with valerian and sow-thistle plants by PCR–RFLP analyses. Journal of Phytopathology, 156: 326331. doi:10.1111/j.1439-0434.2007.01348.x.Google Scholar
Khurana, S.M.P. 1999. Virus and virus-like diseases in potato and their control. In Diseases of horticultural crops — vegetables, ornamentals and mushrooms. Edited by Verma, L.R. and Sharma, R.C.. Indus Publishing Company, New Dehli, India. pp. 82120.Google Scholar
Kirkpatrick, B.C. 1992. Mycoplasma-like-organisms: plant and invertebrate pathogens. In The prokaryotes. 2nd ed. Volume IV. Edited by Balows, A., Truper, H. G., Dworkin, M., Harder, W., and Schleifer, K.-H.. Springer-Verlag, New York. pp. 40504067.Google Scholar
Kirkpatrick, B.C., Stenger, D.C., Morris, T.J., and Purcell, A.H. 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science, Washington, D.C.), 238(4824): 197200. PMID:17800459 doi:10.1126/science.238.4824.197.Google Scholar
Kirkpatrick, B.C., Uyemoto, J.K., and Purcell, A.H. 1995. X-disease. In Compendium of stone fruit diseases. Edited by Ogawa, J.M., Zehr, E.I., and Bird, G.W.. American Phytopathological Society St Paul, Minnesota.Google Scholar
Kollar, A., and Seemüller, E. 1989. Base composition of the DNA of mycoplasma-like organisms associated with various plant diseases. Journal of Phytopathology, 127: 177186. doi:10.1111/j.1439-0434.1989.tb01127.x.CrossRefGoogle Scholar
Krczal, G., Krczal, H., and Kunze, L. 1989. Fieberiella florii (Stal) — a vector of the apple prolife-ration agent. Acta Horticulturae, 235: 99104.Google Scholar
Křižan, B., Moravcová, K., Ondrušiková, E., Adam, M., Holleinová, V., and Pidra, M. 2008. Thermotherapy of grapevines and apricots by reason of viruses and phytoplasma elimination. Acta Horticulturae, 781: 9396.Google Scholar
Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A.M., Reinhardt, R., and Seemüller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics, 9: 306. PMID:18582369 doi:10.1186/1471-2164-9-306.Google Scholar
Kunkel, L.O. 1926. Studies on aster yellows. American Journal of Botany, 13: 646705. doi:10.2307/2435474.Google Scholar
Kunkel, L.O. 1941. Heat cure of aster yellows in periwinkles. American Journal of Botany, 28: 761769. doi:10.2307/2436662.Google Scholar
Kunkel, L.O. 1943. Potato witches'-broom transmission by dodder and cure by heat. Proceedings of the American Phytopathological Society, 86: 470475.Google Scholar
Langer, M., and Maixner, M. 2004. Molecular characterization of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43: 191199.Google Scholar
Langer, M., Darimont, H., and Maixner, M. 2003. Characterization of isolates of Vergilbungkrankheit-phytoplasma by RFLP-analysis and their association with grapevine, herbaceous host plants and vectors. In Proceedings of the 14th Conference of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine, Locorotondo, Italy, 12–17 Septem- ber 2003. pp. 6667.Google Scholar
Larsen, K.J., and Whalon, M.E. 1987. Crepuscular movement of Paraphlesius irroratus (Say) (Homoptera Cicadellidae) between the groundcover and cherry trees. Environmental Entomology, 16: 11031106.Google Scholar
Larsen, K.J., and Whalon, M.E. 1988. Dispersal of Paraphlesius irroratus (Say) (Homoptera: Cicadellidae) in peach and cherry orchards. Environmental Entomology, 17: 842851.CrossRefGoogle Scholar
Laviña, A., Sabaté, J., and Battle, A. 2006. Spread and transmission of Bois noir phytoplasma in two regions of Spain. In Proceedings of the 15th Meeting of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine, Stellenbosch, South Africa. pp. 218220.Google Scholar
Lee, I.-M., and Davis, R.E. 1992. Mycoplasmas which infect plants and insects. In Mycoplasmas — molecular biology and pathogenesis. Edited by Maniloff, J., McElhaney, R. N., Finch, L. R., and Baseman, J. B.. American Society for Microbiology, Washington, D.C. pp. 379390.Google Scholar
Lee, I.-M., Hammond, R.W., Davis, R.E., and Gundersen, D.E. 1993. Universal amplification and analysis of pathogen 16SrDNA for classification and identification of mycoplasmalike organisms. Phytopathology, 83: 834842. doi:10.1094/Phyto-83-834.Google Scholar
Lee, I.-M., Bertaccini, A., Vibio, M., and Gundersen, D.E. 1995. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology, 85: 728735. doi:10.1094/Phyto-85-728.CrossRefGoogle Scholar
Lee, I.-M., Gundersen-Rindal, D.E., and Bertaccini, A. 1998. Phytoplasma: ecology and genomic diversity. Phytopathology, 88: 13591366. PMID: 18944840 doi:10.1094/PHYTO.1998.88.12.1359.Google Scholar
Lee, I.-M., Davis, R.E., and Gundersen-Rindal, D.E. 2000. Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology, 54: 221255. PMID:11018129 doi:10.1146/annurev. micro.54.1.221.Google Scholar
Lee, I.-M., Gundersen-Rindal, D.E., Davis, R.E., Bottner, K.D., Marcone, C., and Seemüller, E. 2004 a. Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54: 10371048. PMID:15280267 doi:10.1099/ijs.0.02843-0.Google Scholar
Lee, I.-M., Martini, M., Marcone, C., and Zhu, S.F. 2004 b. Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. International Journal of Systematic and Evolutionary Microbiology, 54: 337347. PMID:15023 941 doi:10.1099/ijs.0.02697-0.Google Scholar
Lee, I.-M., Bottner, K.D., Munyaneza, J.E., Davis, R.E., Crosslin, J.M., du Toit, L.J., and Crosby, T. 2006. Carrot purple leaf: a new spiroplasmal disease associated with carrots in Washington State. Plant Disease, 90: 989993. doi:10.1094/PD-90-0989.Google Scholar
Lee, I.-M., Bottner, K.D., Dally, E.L., and Davis, R.E. 2008. First report of purple coneflower phyllody associated with a 16SrI-B phytopasma in Maryland. Plant Disease, 92: 654. doi:10.1094/PDIS-92-4-0654B.CrossRefGoogle ScholarPubMed
Lefol, C., Caudwell, A., Lherminier, J., and Larrue, J. 1993. Attachment of the Flavescence dorée pathogen (MLO) to leafhopper vectors and other insects. The Annals of Applied Biology, 123: 611622. doi:10.1111/j.1744-7348.1993.tb04931.x.Google Scholar
Lefol, C., Lherminier, J., Boudon-Padieu, E., Larrue, J., Louis, C., and Caudwell, A. 1994. Propagation of Flavescence dorée MLO (Mycoplasma-Like-Organism) in the leafhopper vector Euscelidius variegatus Kbm. Journal of Invertebrate Pathology, 63: 285293. doi:10.1006/jipa.1994.1053.CrossRefGoogle Scholar
Lessio, F., and Alma, A. 2004. Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera Cicadellidae), vector of the phytoplasma agent of grapevine Flavescence dorée. Agricultural and Forest Entomology, 6: 121127. doi:10.1111/j.1461-9563.2004.00212.x.Google Scholar
Lherminier, J., Prensier, G., Boudon-Padieu, E., and Caudwell, A. 1990. Immunolabeling of grapevine Flavescence dorée MLO in salivary glands of Euscelidius variegatus: a light and electron microscopy study. The Journal of Histochemistry and Cytochemistry, 38: 7985 PMID:2294149.CrossRefGoogle ScholarPubMed
Li, Z.N., Zheng, X., Wei, H.J., Yu, Q., Wu, W.J., and Wu, Y.F. 2009. First report of elm yellows phytoplasma infecting clover in China. Plant Disease, 93: 321. doi:10.1094/PDIS-93-3-0321B.CrossRefGoogle ScholarPubMed
Liefting, L.W., Shaw, M.E., and Kirkpatrick, B.C. 2004. Sequence analysis of two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent. Microbiology, 150: 18091817. PMID:15184567 doi:10.1099/mic.0.26806-0.Google Scholar
Liu, H.-S., Chen, C.-C., and Lin, C.-P. 2007. Detection and identification of the phytoplasma associated with pear decline in Taiwan. European Journal of Plant Pathology, 117: 281291. doi:10.1007/s10658-006-9094-4.Google Scholar
Lukens, R.J., Miller, P.M., Walton, G.S., and Hitchcock, S.W. 1971. Incidence of X-disease of peach and eradication of chokecherry. Plant Disease Reporter, 55: 645647.Google Scholar
Maillet, P.L., and Gouranton, L. 1971. Étude du cycle biologique du mycoplasma de la phyllodie du trèfle dans l'insecte vecteur Euscelis lineolatus Brullé (Homoptéra, Jassidae). Journal of Microscopy, 11: 143162.Google Scholar
Maixner, M. 1994. Transmission of German grapevine yellows by the planthopper Hyalesthes obsoletus. Vitis, 33: 103104.Google Scholar
Maixner, M., Ahrens, U., and Seemüller, E. 1995. Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by specific PCR procedure. European Journal of Plant Pathology, 101: 241250. doi:10.1007/BF01874780.CrossRefGoogle Scholar
Martini, M., Lee, I.-M., Bottner, K.D., Zhao, Y., Botti, S., Bertaccini, A., et al. 2007. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 57: 20372051. PMID: 17766869 doi:10.1099/ijs.0.65013-0.Google Scholar
Marzachi, C., Milne, R.G., and Bosco, D. 2004. Phytoplasma–plant–vector relationships. In Recent research development in plant pathology, Vol. 3. Edited by Pandalai, S.G. and Gayathri, A., Research Signpost, Trovandrum, Kerala, India. pp. 211241.Google Scholar
Marzorati, M., Alma, A., Sacchi, L., Pajoro, M., Palermo, S., Brusetti, L., et al. 2006. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence dorée in Vitis vinifera. Applied and Environmental Microbiology, 72: 14671475. PMID: 16461701 doi:10.1128/AEM.72.2.1467-1475.2006.CrossRefGoogle ScholarPubMed
Matteoni, J.A., and Sinclair, W.A. 1988. Elm yellows and ash yellows. In Tree mycoplasmas and mycoplasma diseases. Edited by Hiruki, C.. University of Alberta, Edmonton, Alberta. pp. 1931.Google Scholar
Matteoni, J.A., and Sinclair, W.A. 1989. A note on the presence of elm yellows in the Niagara peninsula. Phytoprotection, 70: 137139.Google Scholar
Maw, H.E.L., Foottit, R.G., Hamilton, K.G.A., and Scudder, G.G.E. 2000. Checklist of the Hemiptera of Canada and Alaska. NRC Research Press, Ottawa, Ontario.Google Scholar
MacLeod, D.J. 1939. Viruses isolated from potato varieties in cultivation in Canada. Canadian Plant Disease Survey, 19: 6974.Google Scholar
MacLeod, D.J. 1954. Aster yellows (purple-top) of potatoes. American Journal of Potato Research, 31: 119128. doi:10.1007/BF02859992.Google Scholar
McClure, M.S. 1980 a. Role of wild host plants in the feeding, oviposition, and dispersal of Scaphytopius acutus (Homoptera: Cicadellidae) a vector of peach X-disease. Environmental Entomology, 9: 283292.Google Scholar
McClure, M.S. 1980 b. Spatial and seasonal distributions of leafhopper vectors of peach X-disease in Connecticut. Environmental Entomology, 9: 668672.Google Scholar
McCoy, R.E. 1982. Use of tetracycline antibiotics to control yellow diseases. Plant Disease, 66: 539542.CrossRefGoogle Scholar
McCoy, R.E., Caudwell, A., Chang, C.J., Chen, T.A., Chiykowski, L.N., Cousin, M.T., et al. 1989. Plant diseases associated with mycoplasmalike organisms. In The mycoplasmas. Volume 5. Edited by Whitcomb, R. F. and Tully, J. G.. Academic Press, New York. pp. 545560.Google Scholar
McLaren, D.L., and Platford, R.G. 2001. Distribution, prevalence and incidence of canola diseases in Manitoba (2000). Canadian Plant Disease Survey, 81: 108110.Google Scholar
McLarty, H.R. 1941. Western X-disease. Canadian Plant Disease Survey, 21: 7374.Google Scholar
McLarty, H.R. 1948. Killing of pear trees. Canadian Plant Disease Survey, 28: 77.Google Scholar
McManus, P.S., Stockwell, V.O., Sundin, G.W., and Jones, A.L. 2002. Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40: 443465. PMID:12147767 doi:10.1146/annurev.phyto.40.120301.093927.Google Scholar
Mitchell, P.L. 2004. Heteroptera as vectors of plant pathogens. Neotropical Entomology, 33: 519545. doi:10.1590/S1519-566X2004000500001.CrossRefGoogle Scholar
Mitsuhashi, W., Saiki, T., Wei, W., Kawakita, H., and Sato, M. 2002. Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Molecular Biology, 11: 577584. PMID:12421415 doi:10.1046/j.1365-2583.2002.00368.x.Google Scholar
Moran, N.A., Tran, P., and Gerardo, N.M. 2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology, 71: 88028810. PMID:16332876 doi:10.1128/AEM.71.12.8802-8810.2005.CrossRefGoogle ScholarPubMed
Mori, N., Bressan, A., Martini, M., Guadagnini, M., Girolami, V., and Bertaccini, A. 2002. Experimental transmission by Scaphoideus titanus Ball of two Flavescence dorée type phytoplasmas. Vitis, 41: 99102.Google Scholar
Murral, D.J., Nault, L.R., Hoy, C.W., Madden, L.V., and Miller, S.A. 1996. Effects of temperature and vector age on transmission of two Ohio strains of aster yellows phytoplasma by the aster leafhopper (Homoptera: Cicadellidae). Journal of Economic Entomology, 89: 12231232.Google Scholar
Murray, R.G.E., and Schleifer, K.H. 1994. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. International Journal of Systematic Bacteriology, 44: 174176.Google Scholar
Murray, R.G.E., and Stackebrandt, E. 1995. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. International Journal of Systematic Bacteriology, 45(1): 186187 PMID: 7857801.Google Scholar
Musetti, R., and Favali, M.A. 2004. Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. In Current issues on multidisciplinary microscopy research and education. Edited by Mendes-Vilas, A. and Labajos-Broncano, L.. Formattex Book Series Volume 2. pp. 7280.Google Scholar
Nagadhara, D., Ramesh, S., Pasalu, I.C., Rao, Y.K., Krishnaiah, N.V., Sarma, N.P., et al. 2003. Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnology Journal, 1: 231240. PMID:17156035 doi:10.1046/j.1467-7652.2003.00022.x.Google Scholar
Nečas, T., Mašková, V., and Krška, B. 2008. The possibility of ESFY phytoplasma transmission: through flowers and seeds. Acta Horticulturae, 781: 443448.Google Scholar
Nesten, D., and Klein, M. 1995. Geostatistical analysis of leafhopper (Homoptera: Cicadellidae) colonization and spread in deciduous orchards. Environmental Entomology, 24: 10321039.CrossRefGoogle Scholar
Nichiporick, W. 1965. The aerial migration of the six-spotted leafhopper and the spread of the virus disease aster yellows. International Journal of Biometeorology, 9: 219227. doi:10.1007/BF02219953.CrossRefGoogle Scholar
Nipah, J.O., Jones, P., and Dickinson, M.J. 2007. Detection of lethal yellowing phytoplasma in embryos from coconut palms infected with Cape St. Paul wilt disease in Ghana. Plant Pathology, 56: 777784. doi:10.1111/j.1365-3059.2007.01623.x.Google Scholar
Nishigawa, H., Miyata, S., Oshima, K., Sawayanagi, T., Komoto, A., Kuboyama, T., et al. 2001. In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology, 147: 507513 PMID:11158368.CrossRefGoogle ScholarPubMed
Nishigawa, H., Oshima, K., Kakizawa, S., Jung, H.Y., Kuboyama, T., Miyata, S., Ugaki, M., and Namba, S. 2002. A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene, 298: 195201. PMID:12426107 doi:10.1016/S0378-1119(02)009 75-7.CrossRefGoogle ScholarPubMed
Nusillard, B., Malausa, J.C., Giuge, L., and Millot, P. 2003. Assessment of a two years study of the natural enemies fauna of Scaphoideus titanus Ball in its North American native area. International Organization for Biological and Integrated Control of Noxious Animals and Plants Bulletin, 26: 237240.Google Scholar
Nyvall, R.F. 1999. Field crop diseases handbook. 3rd ed. Iowa State University Press, Ames, Iowa. pp. 865966.Google Scholar
Olfert, O.O., Séguin-Swartz, G., and Olivier, C.Y. 2004. Pest status of leafhoppers and their impact on aster yellows disease in canola. Final report, Project 20000242, Saskatchewan Agriculture Development Fund, Saskatoon, Saskatchewan.Google Scholar
Olivier, C. 2007. Aster yellows. In Compendium of Brassica diseases. Edited by Rimmer, S. R., Shattuck, V. I., and Buchwaldt, L.. American Phytopathological Society Press, St. Paul, Minnesota. pp. 6264.Google Scholar
Olivier, C., Lowery, T., Stobbs, L., Galka, B., Bittner, L., and Vickers, T. 2007. Phytoplasma diseases in Canadian vineyards. Canadian Journal of Plant Pathology, 29: 447.Google Scholar
Olivier, C.Y., Murza, G., Galka, B., McAleese, D., Hegedus, D.D., Barasubiye, T., et al. 2006 a. Survey of aster yellows disease in canola crops in Saskatchewan, Canada, 2001–2005. Cruciferae Newsletter, 26: 4042.Google Scholar
Olivier, C.Y., Séguin-Swartz, G.T., Hegedus, D.D., and Barasubiye, T. 2006 b. First report of ‘Candidatus Phytoplasma asteris’-related strains in Brassica rapa in Saskatchewan, Canada. Plant Disease, 90: 832. doi:10.1094/PD-90-0832C.Google Scholar
Olivier, C.Y., Galka, B., Rott, M., and Johnson, R. 2008. First report of molecular detection of ‘Candidatus Phytoplasma asteris’-related strains in seeds of Brassica napus in Saskatchewan, Canada. Cruciferae Newsletter, 27: 2223.Google Scholar
Olivier, C.Y., Lowery, D.T., Stobbs, L.W., Vincent, C., Galka, B., Saguez, J., et al. 2009. First report of aster yellow phytoplasmas (‘Candidatus phytoplasma asteris’) in Canadian grapevines. Plant Disease, 93: 669. doi:10.1094/PDIS-93-6-0669A.Google Scholar
Oraze, M.J., and Grigarick, A.A. 1989. Biological control of aster leafhopper (Homoptera: Cicadelliade) and midges (Diptera: chironomidae) by Pardosa ramulosa (Araneae: Lycosidae) in California rice fields. Journal of Economic Entomology, 82: 745749.Google Scholar
Oshima, K., Shiomi, T., Kuboyama, T., Sawayanagi, T., Nishigawa, H., Kakizawa, S., et al. 2001. Isolation and characterization of derivative lines of the onion yellows phytoplasma that do not cause stunting or phloem hyperplasia. Phytopathology, 91: 10241029. PMID: 18943436 doi:10.1094/PHYTO.2001.91.11.1024.Google Scholar
Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., et al. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36: 2729. PMID:14661021 doi:10.1038/ng1277.Google Scholar
Oshima, K., Kakizawa, S., Arashida, R., Ishii, Y., Hoshi, A., Hayashi, Y., Kagiwada, S., and Namba, S. 2007. Presence of two glycolytic gene clusters in a severe pathogenic line of Candidatus phytoplasma asteris. Molecular Plant Pathology, 8: 481489. doi:10.1111/j.1364-3703.2007.00408.x.CrossRefGoogle Scholar
Palermo, S., Arzone, A., and Bosco, D. 2001. Vector–pathogen–host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomologia Experimentalis et Applicata, 99: 347354. doi:10.1046/j.1570-7458.2001.00834.x.Google Scholar
Paltrinieri, S., Martini, M., Pondrelli, M., and Betaccini, A. 1998. X-disease related phytoplasmas in ornamental trees and shrubs with witches' broom and malformation symptoms. Journal of Plant Pathology, 80: 261.Google Scholar
Pearse, P.G., Bassendowski, K.A., Cross, D.J., Gugel, R.K., Kirkham, C.L., Kutcher, H.R., Morrall, R.A.A., and Yasinowski, J.M. 2008. Survey of canola diseases in Saskatchewan, 2007. Canadian Plant Disease Survey, 88: 103104.Google Scholar
Pearson, R.C., Pool, R.M., Gonsalves, D., and Goffinet, D.C. 1985. Occurrence of flavescence dorée-like symptoms on white Riesling grapevines in New York, U.S.A. Phytopathologia Mediterranea, 24: 8287.Google Scholar
Pedrazzoli, F., Gualandri, V., Forno, F., Mattedi, L., Malagnini, V., Salvadori, A., Stoppa, G., and Ioriatti, C. 2007. Acquisition capacities of the overwintering adults of the psyllid vectors of ‘Candidatus Phytoplasma mali’. Bulletin of Insectology, 60: 195196.Google Scholar
Petrie, G.A. 1973. Diseases of Brassica species in Saskatchewan, 1970–1972. I. Staghead and aster yellows. Canadian Plant Disease Survey, 53: 1925.Google Scholar
Pospieszny, H., Krawczyk, K., Kamasa, J., and Petrzik, K. 2007. First report of a phytoplasma affecting tomato in Poland. Plant Disease, 91: 1054. doi:10.1094/PDIS-91-8-1054B.Google Scholar
Postman, J.D., Johnson, K.B., Jomantiene, R., Maas, J.L., and Davis, R.E. 2001. The ‘Oregon hazelnut stunt syndrome’ and phytoplasma associations. Acta Horticulturae, 556: 407409.CrossRefGoogle Scholar
Přibylová, J., Petrzik, K., and Spak, J. 2009. The first detection of ‘Candidatus Phytoplasma trifolii’ in Rhododendron hybridum. European Journal of Plant Pathology, 124: 181185. doi:10.1007/s10658-008-9391-1.CrossRefGoogle Scholar
Purcell, A.H. 1988. Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with Mollicute plant pathogens. Entomologia Experimentalis et Applicata, 46: 187196. doi:10.1007/BF00190850.Google Scholar
Quaglino, F., Zhao, Y., Bianco, P.A., Wei, W., Casati, P., Durante, G., and Davis, R.E. 2009. New 16Sr subgroups and distinct single nucleotide polymorphism lineages among grapevine Bois noir phytoplasma populations. The Annals of Applied Biology, 154: 279289. doi:10.1111/j.1744-7348.2008.00294.x.Google Scholar
Radcliffe, E.B. 1982. Insect pests of potato. Annual Review of Entomology, 27: 173204. doi:10.1146/annurev.en.27.010182.001133.Google Scholar
Rancic, D., Paltrinieri, S., Tosevski, I., Petanovic, R., Stevanovic, B., and Bertaccini, A. 2005. First report of multiple inflorescence disease of Cirsium arvense and its association with a 16SrIII-B subgroup phytoplasma in Serbia. Plant Pathology, 54(4): 561. doi:10.1111/j.1365-3059.2005.01201.x.Google Scholar
Rankin, L. 1987. Lettuce disease survey in New Brunswick, 1986. Canadian Plant Disease Survey, 67: 2530.Google Scholar
Rapp, W.F. 1943. Some new North American Pipunculidae (Diptera). Entomological News, 54: 224.Google Scholar
Reeder, R., and Arocha, Y. 2008. Candidatus Phytoplasma asteris’ identified in Senecio jacobaea in the United Kingdom. Plant Pathology, 57: 769. doi:10.1111/j.1365-3059.2008.01849.x.Google Scholar
Rieddle-Bauer, M., Tiefenbrunner, W., Otreba, J., Hanak, K., Schildberger, B., and Regner, F. 2006. Epidemiological observations on Bois noir in Austrian vineyards. Mitteilungen Klosterrneuburg, 56: 166170.Google Scholar
Romanazzi, G., D'Ascenzo, D., and Murolo, S. 2009. Tussilago farfara: a new natural host of stolbur phytoplasma. Plant Pathology, 58: 392. doi:10.1111/j.1365-3059.2008.01994.x.Google Scholar
Rosenberger, D.A., and Jones, A.L. 1978. Leaf-hopper vectors of the peach X-dsease pathogen and seasonal transmission from chockecherry. Phytopathology, 68: 782790. doi:10.1094/Phyto-68-782.Google Scholar
Rott, M., Johnson, R., Masters, C., and Green, M. 2007. First report of Bois noir phytoplasma in grapevine in Canada. Plant Disease, 91: 1682. doi:10.1094/PDIS-91-12-1682A.Google Scholar
Salehi, M., Izadpanah, K., and Siampour, M. 2007. Characterization of a phytoplasma associated with cabbage yellows in Iran. Plant Disease, 91: 625630. doi:10.1094/PDIS-91-5-0625.Google Scholar
Salehi, M., Izadpanah, K., and Siampour, M. 2008. First report of ‘Candidatus Phytoplasma trifolii’-related strain associated with safflower phyllody disease in Iran. Plant Disease, 92: 649. doi:10.1094/PDIS-92-4-0649A.CrossRefGoogle ScholarPubMed
Samuitiene, M., Navalinskiene, M., Davis, R.E., and Jomantiène, R. 2006. Molecular characterization of diverse phytoplasma of subgroups 16SrI-A, 16SrI-B, 16SrI-L., and 16SrI-M infecting ornamental plants in Lithuania. EPPO (European and Mediterranean Plant Protection) Bulletin, 36: 4751.Google Scholar
Santos-Cervantes, M.E., Chávez-Medina, J.A., Méndez-Lozano, J., and Leyva-López, N.E. 2008. Detection and molecular characterization of two little leaf phytoplasma strains associated with pepper and tomato diseases in Guanajuato and Sinaloa, Mexico. Plant Disease, 92: 10071011. doi:10.1094/PDIS-92-7-1007.Google Scholar
Saracco, P., Marzachi, C., and Bosco, D. 2008. Activity of some insecticides in preventing transmission of chrysanthemum yellows phytoplasma (‘Candidatus phytoplasma asteris’) by the leaf-hopper Macrosteles quadripunctulatus Kirschbaum. Crop Protection (Guildford, Surrey), 27: 130136. doi:10.1016/j.cropro.2007.05.002.CrossRefGoogle Scholar
Schaad, N.W., Abrams, J., Madden, L.V., Frederick, R.D., Luster, D.G., Damsteegt, V.D., and Vidaver, A.K. 2006. An assessment model for rating high-threat crop pathogens. Phytopathology, 96: 616621. PMID:18943179 doi:10.1094/PHYTO-96-0616.Google Scholar
Scheffer, R.P. 1997. The nature of disease in plants. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
Schneider, B., Ahrens, U., Kirkpatrick, B.C., and Seemüller, E. 1993. Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. Journal of General Microbiology, 139: 519527.CrossRefGoogle Scholar
Scott, S.W., and Zimmerman, M.T. 2001. Peach rosette, little peach, and red suture are diseases induced by a phytoplasma closely related to Western X-disease. Acta Horticulturae, 550: 351354.Google Scholar
Sears, B.B., and Klomparens, K.L. 1989. Leaf tip cultures of the evening primrose allow stable, aseptic culture of mycoplasma-like organism. Canadian Journal of Plant Pathology, 11: 343348.Google Scholar
Secor, G.A. 2007. The canon of potato science: 13. Phytoplasma diseases. Potato Research, 50(3–4): 255257. doi:10.1007/s11540-008-9080-7.Google Scholar
Seemüller, E. 1995. Moliere's disease. In Compendium of stone fruit diseases. Edited by Ogawa, J. M., Zehr, E. I., and Bird, G. W.. American Phytopathological Society, St. Paul, Minnesota. pp. 5758.Google Scholar
Seemüller, E., and Schneider, B. 2004. Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology, 54: 12171226. PMID:15280295 doi:10.1099/ijs.0.02823-0.Google Scholar
Seemüller, E., and Schneider, B. 2007. Differences in virulence and genomic features of strains of ‘Candidatus Phytoplasma mali’, the apple proliferation agent. Phytopathology, 97: 964970. PMID:18943636 doi:10.1094/PHYTO-97-8-0964.Google Scholar
Seemüller, E.H., Lorenz, K.H., and Lauer, U. 1998 a. Pear decline resistance in Pyrus communis rootstocks and progenies of wild and ornamental Pyrus taxa. Acta Horticulturae, 472: 681690.Google Scholar
Seemüller, E., Marcone, C., Lauer, U., Ragozzino, A., and Göschl, M. 1998 b. Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 80: 326.Google Scholar
Sertkaya, G., Martini, M., Ermacora, P., Musetti, R., and Osler, R. 2005. Detection and characterization of phytoplasmas in diseased stone fruits and pear by PCR-RFLP analysis in Turkey. Phytoparasitica, 33: 380390. doi:10.1007/BF02981306.Google Scholar
Sertkaya, G., Martini, M., Ermacora, P., Musetti, R., and Osler, R. 2007. Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous crops in Turkey. Bulletin of Insectology, 60: 141142.Google Scholar
Setiawan, D.P., and Ragsdale, D.W. 1987. Use of aluminium-foil and oat-straw mulches for controlling aster leafhopper, Macrosteles fascifrons (Homoptera: Cicadelliade), and aster yellows in carrots. Great Lakes Entomologist, 20: 103109.Google Scholar
Sforza, R., Clair, D., Daire, X., Larrue, J., and Boudon-Padieu, E. 1998. The role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in the occurrence of Bois noir of grapevines in France. Journal of Phytopathology, 146(11–12): 549556. doi:10.1111/j.1439-0434.1998.tb04753.x.Google Scholar
Shaw, M.E., Kirkpatrick, B.C., and Golino, D.A. 1993. The beet leafhopper-transmitted virescence agent causes tomato big bud disease in California. Plant Disease, 77: 290295.Google Scholar
Shockley, F.W., and Backus, E.A. 2002. Repellency to the potato leafhopper (Homoptera: Cicadellidae) by erect glandular trichomes on alfalfa. Environmental Entomology, 31: 2229.Google Scholar
Siddique, A.B.M., Guthrie, J.N., Walsh, K.B., White, D.T., and Scott, P.T. 1998. Histopathology and within-plant distribution of the phytoplasma associated with Australian papaya dieback. Plant Disease, 82: 11121120. doi:10.1094/PDIS.1998.82.10.1112.Google Scholar
Siller, W., Kuhbandner, B., Marwitz, R., Petzold, H., and Seemüller, E. 1987. Occurrence of mycoplasma-like organisms in paremchyma cells of Cuscuta odorata (Ruiz et Pav.). Journal of Phytopathology, 119: 147159. doi:10.1111/j.1439-0434.1987.tb00477.x.Google Scholar
Sinclair, W.A. 1981. Elm yellows. In Compendium of elm diseases. Edited by Stipes, R.J. and Campana, R.J.. American Phytopathology Society, St. Paul, Minnesota. pp. 2531.Google Scholar
Sinclair, W.A., and Griffiths, H.M. 1994. Ash yellows and its relationship to dieback and decline in ash. Annual Review of Phytopathology, 32: 4960. doi:10.1146/annurev.py.32.090194.000405.Google Scholar
Sinclair, W.A., Iuli, R.J., Dyer, A.T., Marshall, P.T., Matteoni, J.A., Hibben, C.R., Stanosz, G.R., and Burns, B.S. 1990. Ash yellows: geographic range and association with decline of white ash. Plant Disease, 74: 604607. doi:10.1094/PD-74-0604.Google Scholar
Sinha, R.C. 1983. Relative concentration of mycoplasma-like organisms in plants at various times after infection with aster yellows. Canadian Journal of Plant Pathology, 5: 710.Google Scholar
Sinha, R.C., and Chiykowski, L.N. 1980. Transmission and morphological features of mycoplasma-like bodies associated with peach X-disease. Canadian Journal of Plant Pathology, 2: 119124.Google Scholar
Sliwa, H., Kaminska, M., Korszun, S., and Adler, P. 2008. Detection of ‘Candidatus Phytoplasma pini’ in Pinus sylvestris trees in Poland. Journal of Phytopathology, 156: 8892.Google Scholar
Slogteren, D.H.M., Van Groen, N.P.A., and Muller, P.J. 1974. Yellows disease of gladiolus and hyacinth in the Netherlands. Acta Horticulturae, 36: 303311.Google Scholar
Staniulis, J.B., Davis, R.E., Jomantiene, R., Kalvelyte, A., and Dally, E.L. 2000. Single and mixed phytoplasma infection in phyllody- and dwarf-diseased clover plants in Lithuania. Plant Disease, 84: 10611066. doi:10.1094/PDIS.2000.84.10.1061.Google Scholar
Statistics Canada. 2008. Farm cash receipts, Januaru to December 2007. The Daily, Statistics Canada, Monday, February 25. Available from http://www.statcan.ca/Daily/English/080225/d080225a.htm [accessed 5 September 2008].Google Scholar
Steffek, R., Reisenzein, H., and Zeisner, N. 2007. Analysis of the pest risk from grapevine flavescence dorée phytoplasma to Austrian viticulture. EPPO (European and Mediterranean Plant Protection) Bulletin, 37: 191203.Google Scholar
Stevens, N.E., and Stevens, R.B. 1947. Plant diseases during the years 1941–1945 in the United States and Canada. Botanical Review, 13: 92115. doi:10.1007/BF02861544.Google Scholar
Stoddard, E.M. 1938. ‘X-disease’ of peach. Connecticut Agricultural Experiment Station New Haven Circular No. 122.Google Scholar
Suslow, K.G., and Purcell, A.H. 1982. Seasonal transmission of the X-disease agent from cherry by the leafhopper vector Colladonus montanus. Plant Disease, 66: 2831.Google Scholar
Suzuki, S., Oshima, K., Kakizawa, S., Arashida, R., Jung, H.-Y., Yamaji, Y., et al. 2006. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect–vector specificity. Proceedings of the National Academy of Sciences of the United States of America, 103: 42524257. PMID:16537517 doi:10.1073/pnas.0508668103.Google Scholar
Tanaka, M., Shiomi, T., Uehara, T., and Matsuda, I. 1998. Identical characteristics of Japanese phytoplasma transmitted by Scleroracus flavopictus. In Proceedings of the 7th International Congress of Plant Pathology, 9–18 August 1998, British Society for Plant Pathology, Edinburgh, United Kingdom. p. 2.2.24.Google Scholar
Tanne, E., Boudon-Padieu, E., Clair, D., Davidovich, M., Melamed, S., and Klein, M. 2001. Detection of phytoplasma by polymerase chain reaction of insect feeding medium and its use in determining vectoring ability. Phytopathology, 91: 741746. PMID:18944030 doi:10.1094/PHY TO.2001.91.8.741.Google Scholar
Tedeschi, R., and Alma, A. 2006. Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Disease, 90: 284290. doi:10.1094/PD-90-0284.Google Scholar
Tedeschi, R., Ferrato, V., Rossi, J., and Alma, A. 2006. Possible phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathology, 55(1): 1824. doi:10.1111/j.1365-3059.2005.01292.x.Google Scholar
The Canadian Phytopathological Society. 1936. Diseases of vegetable and field crops. Canadian Plant Disease Survey, 16: 2147.Google Scholar
The Canadian Phytopathological Society. 1941. Diseases of vegetable and field crops. Canadian Plant Disease Survey, 21: 2861.Google Scholar
Tingey, W.M. 1985. Plant defensive mechanisms against leafhoppers. In The leafhoppers and planthoppers. Edited by Nault, L.R. and Rodriguez, J.G.. John Wiley and Sons, New York. pp. 217235.Google Scholar
Tóthová, M., Tóth, P., and Cagán, L. 2004. Leafhoppers, planthoppers, froghoppers and cixiids (Auchenorrhyncha) on pigweeds as vectors of plant diseases. Acta Fytotechnica et Zootechnica, 7: 322326.Google Scholar
Tran-Nguyen, L.T.T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K.S. 2008. Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ strains OY-M and AY-WB. Journal of Bacteriology, 190: 39793991. PMID:18359806 doi:10.1128/JB.01301-07.Google Scholar
Tucker, J. 1932. Potato. Canadian Plant Disease Survey, 12: 3259.Google Scholar
Urbanavičienė, L., Valiūnas, D., and Jomantiène, R. 2006. Detection of aster yellows group (16SrI-B) phytoplasma in oats based on nested PCR and RFLP in Lithuania. Agronomy Research, 4: 417420.Google Scholar
Uyemoto, J.K., Cummins, J.R., and Abawi, G.S. 1977. Virus and virus-like diseases affecting grapevines in New York grapevines. American Journal of Enology and Viticulture, 28: 131136.Google Scholar
Uyemoto, J.K., Kirkpatrick, B.C., and Cummins, J.N. 1991. Susceptibility of selected cherry clones and related species to Western X-disease. HortScience, 26: 15101511.Google Scholar
Uyemoto, J.K., Connell, J.H., Hasey, J.K., and Luhu, C.F. 1992. Almond brown line and decline: a new disease probably caused by mycoplasma-like organism. The Annals of Applied Biology, 120: 417424. doi:10.1111/j.1744-7348.1992.tb04901.x.Google Scholar
Uyemoto, J.K., Bethell, R.E., Kirkpatrick, B.C., Munkwold, G.P., Marois, J.J., and Brown, K.W. 1998. Eradication as a control measure for X-disease in California cherry orchards. Acta Horticulturae, 472: 715721.Google Scholar
Valiūnas, D., Urbanavičienė, L., Jomantiène, R., and Davis, R.E. 2007. Molecular detection, classification and phylogenetic analysis of subgroup 16SrI-C phytoplasmas detected in diseased Poa and Festuca in Lithuania. Biologija (Vilnius, Lithuania), 53: 3639.Google Scholar
Valiūnas, D., Samuitiene, M., Navalinskiene, M., and Davis, R.E. 2008. Identification of viral and phytoplasmal agents causing diseases in Gaillardia Foug. Plants in Lithuania. Agronomy Research, 6: 109118.Google Scholar
Vanterpool, T.C. 1963. Rape diseases in Saskatchewan in 1963. Canadian Plant Disease Survey, 43: 212214.Google Scholar
Viczian, O., Süle, S., and Gaborjanyi, R. 1998. Detection and identification of stolbur phyto-plasma in Hungary by PCR and RFLP methods. Acta Phytopathologica et Entomologica Hungarica, 33: 255260.Google Scholar
Waite, H., Crocker, J., Fletcher, G., Wright, P., and Delaine, A. 2001. Hot water treatment in commercial nursery practice. Wines and Vines, December 2001: 5054.Google Scholar
Wang, K., and Hiruki, C. 2001 a. Molecular characterization and classification of phytoplasma associated with canola yellows and a new phytoplasma strain associated with dandelions. Plant Disease, 85: 7679. doi:10.1094/PDIS.2001.85.1.76.Google Scholar
Wang, K., and Hiruki, C. 2001 b. Use of heteroduplex mobility assay for identification and differentiation of phytoplasmas in the aster yellows group and the clover proliferation group. Phytopathology, 91: 546552. PMID:18943942 doi:10.1094/PHYTO.2001.91.6.546.Google Scholar
Wang, K., and Hiruki, C. 2005. Distinction between phytoplasmas at the subgroup level detected by heteroduplex mobility assay. Plant Pathology, 54: 625633. doi:10.1111/j.1365-3059.2005.01248.x.Google Scholar
Waters, H., and Hunt, P. 1980. The in vivo three-dimensional form of a plant mycoplasma like organisms by the analysis of serial ultra thin sections. Journal of General Microbiology, 116: 111131.Google Scholar
Webb, D.R., Bonfiglioli, R.G., Carraro, L., Osler, R., and Symons, R.H. 1999. Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology, 89: 894901. PMID:18944732 doi:10.1094/PHYTO.1999.89.10.894.CrossRefGoogle ScholarPubMed
Wei, W., Kakizawa, S., Suzuki, S., Jung, H.-Y., Nishigawa, H., Miyata, S.-I., et al. 2004. In planta dynamic analysis of onion yellows phytoplasma using localized inoculation by insect transmission. Phytopathology, 94: 244250. PMID:18943972 doi:10.1094/PHYTO.2004.94.3.244.Google Scholar
Wei, W., Davis, R.E., Lee, I.-M., and Zhao, Y. 2007. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57: 18551867. PMID:17684271 doi:10.1099/ijs.0.65000-0.Google Scholar
Wei, W., Davis, R.E., Jomantiène, R., and Zhao, Y. 2008. Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 105: 1182711832. PMID:18701718 doi:10.1073/pnas.0805237105.Google Scholar
Weintraub, P.G. 2007. Insect vectors of phytoplasma and their control — an update. Bulletin of Insectology, 60: 169173.Google Scholar
Weintraub, P.G., and Beanland, L. 2006. Insect vectors of phytoplasmas. Annual Review of Entomology, 51: 91111. PMID:16332205 doi:10.1146/annurev.ento.51.110104.151039.Google Scholar
Weintraub, P.G., and Orenstein, S. 2004. Potential leafhopper vectors of phytoplasma in carrots. International Journal of Tropical Insect Science, 24: 228235. doi:10.1079/IJT200426.Google Scholar
Wernegreen, J.J. 2002. Genome evolution in bacterial endosymbionts of insects. Nature Reviews. Genetics, 3: 850861. PMID:12415315 doi:10.1038/nrg931.Google Scholar
Westdal, P.H., and Richardson, H.P. 1969. The susceptibility of cereals and wild oats to an isolate of the aster yellows pathogen. Canadian Journal of Botany, 47: 755760. doi:10.1139/b69109.Google Scholar
Wheeler, A.G. Jr., 2001. Biology of the plant bugs (Hemiptera: Miridae): pests, predators, opportunists. Cornell University Press, Ithaca, New York.Google Scholar
Whitcomb, R.F., and Tully, J.G. 1979. The mycoplasmas: spiroplasmas, acholeplasmas and mycoplasmas of plants and arthropods. Appendix I: partial listing of plants infected with mycoplasmas-like organisms, grouped by plant family. Volume V. Edited by Whitcomb, R.F. and Tully, J.G.. Academic Press, San Diego, California. pp. 564617.Google Scholar
Wieczorek, A.M., and Wright, M.G. 2003. PCR detection of phytoplasma from witches’ broom disease on Protea spp. (Proteaceae) and associated arthropods. Acta Horticulturae, 602: 161166.Google Scholar
Willison, R.S., and Chamberlain, G.C. 1943. X-disease. Canadian Plant Disease Survey, 23: 86.Google Scholar
Woodbridge, C.G., Blodgett, E.C., and Diener, T.O. 1957. Pear decline in the Pacific Northwest. Plant Disease Reporter, 41: 569572.Google Scholar
Worley, J.F. 1970. Possible replicative forms of a mycoplasma-like organism and their location in aster yellows diseased Nicotiana and aster. Phytopathology, 60: 284292.Google Scholar
Wright, N.S. 1966. Aster yellows of potato in British Columbia. Canadian Plant Disease Survey, 46: 121122.Google Scholar
Zhou, L., Hoy, C.W., Miller, S.A., and Nault, L.R. 2003. Marking methods and field experiments to estimate Aster leafhopper (Macrosteles quadrilineatus) dispersal rates. Environmental Entomology, 32: 11771186.Google Scholar