Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T00:47:48.094Z Has data issue: false hasContentIssue false

PHYSIOLOGICAL CHANGES AND COLD HARDINESS OF SPRUCE BUDWORM LARVAE, CHORISTONEURA FUMIFERANA (CLEM.), DURING PRE-DIAPAUSE AND DIAPAUSE DEVELOPMENT UNDER LABORATORY CONDITIONS

Published online by Cambridge University Press:  31 May 2012

Er-Ning Han
Affiliation:
Faculté de Foresterie et de Géomatique, C.R.B.F., Université Laval, Ste-Foy (Québec), Canada G1K 7P4
Eric Bauce
Affiliation:
Faculté de Foresterie et de Géomatique, C.R.B.F., Université Laval, Ste-Foy (Québec), Canada G1K 7P4
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supercooling point, biochemical metabolites, and water content of the larvae of Choristoneura fumiferana (Clem.) were measured during pre-diapause and diapause development under laboratory conditions. Supercooling point dropped significantly, from a mean value of −22.9 °C to −31.7 °C during the 3-week pre-diapause development. Supercooling point continued to decline down to −34.5 °C after the beginning of diapause. Water content also dropped significantly during pre-diapause development and was maintained at a low level during diapause. Significant amounts of glycerol were detected only when the larvae were 5 weeks into diapause and the glycerol level continued to increase until week 20 when it was almost 10 times its original level. Glycogen was nearly depleted after diapause, but lipid remained at a relatively high level. Little change in glucose and trehalose content was found during diapause in spite of their initial rise before diapause. Larvae could survive low temperatures close to their supercooling point without freezing but none survived freezing, suggesting that this species is freeze-intolerant. First-instar larvae were found to excrete green material out of their body within 5 days after emergence. Removal of this material from the insect body coincided with a significant drop in supercooling point, indicating that a potential nucleating factor might be involved in the green material. The implications of these results for the overwintering strategy of C. fumiferana are discussed.

Résumé

Les points de congélation, les métabolites biochimiques de même que les contenus en eau des larves de tordeuse des bourgeons de l’épinette, Choristoneura fumiferana (Clem.), élevées en conditions de laboratoire, ont été mesurées durant une période précédant la diapause et durant la diapause. Pendant les 3 semaines précédant la diapause, le points de congélation des larves diminua de façon significative de −22.9 °C à −31.7 °C. Le point de congélation continua à chuter jusqu’à −34.5 °C après le début de la diapause. Durant la période précédant la diapause, le contenu moyen en eau des larves diminua aussi de façon significative, alors que durant la diapause il fut maintenu à des niveaux relativement bas. Des quantités appréciables de glycérol furent détectées seulement 5 semaines après le début de la diapause. Par la suite, les contenus en glycérol augmentèrent jusqu’à la 20ème semaine. Vingt semaines après le début de la diapause, les niveaux de glycérol étaient 10 fois plus élevés qu’au début de la diapause. A la fin de la diapause, il ne restait plus de glycogène alors que le contenu moyen des larves en lipides se maintenait à des niveaux relativement élevé. Peu de changements dans les contenus moyens des larves en glucose et en tréhalose furent notés durant la diapause, bien que ceux-ci augmentèrent avant le début de la diapause. Les larves de tordeuse ont survécu à des températures se rapprochant de leur points de congélation en autant que le point de congélation ne soit pas atteint. Ceci suggère que cette espèce est du type intolérant à la congélation. A l’intérieur d’une période de 5 jours suivant l’éclosion, les larves de premier stade évacuèrent, par voie d’excrétion, une substance verte. L’élimination de cette substance coïncida avec une baisse significative du point de congélation de l’insecte, indiquant ainsi que cette substance pourrait agir comme facteur de nucléation. Les résultats de cette étude sont discutés dans un cadre de stratégie de dormance hivernale.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

References

Andrews, F.C. 1976. Colligative properties of simple solutions. Science 194: 567571.CrossRefGoogle ScholarPubMed
Baust, J.G., and Rojas, R.R.. 1985. Review — Insect cold-hardiness: Facts and fancy. Journal of Insect Physiology 31: 755759.CrossRefGoogle Scholar
Block, W. 1991. To freeze or not to freeze? Invertebrate survival of sub-zero temperatures. Functional Ecology 5: 284290.CrossRefGoogle Scholar
Block, W., and Zettel, J.. 1980. Cold-hardiness of some alpine Collembola. Ecological Entomology 5: 19.CrossRefGoogle Scholar
Duman, J.G. 1977. The role of macromolecular antifreeze in the Darkling beetle Meracantha contracta. Journal of Comparative Physiology 115: 279286.Google Scholar
Duman, J.G. 1984. Change in overwintering mechanism of the cucujid beetle, Cucujus clavipes. Journal of Insect Physiology 30: 235239.CrossRefGoogle Scholar
Eggstein, M., and Kuhlmann, E.. 1974. Triglycerides and glycerol—determination after alkaline hydrolysis. pp. 1825–1831 in Bergmeyer, H.U. (Ed.), Methods of Enzymatic Analysis, Vol. 4, 2nd ed. Academic Press, Inc., New York, NY. 2302 pp.Google Scholar
Fields, P.G., and McNeil, J.N.. 1986. Possible dual cold-hardiness strategies in Cisseps fulvicollis (Lepidoptera: Arctiidae). The Canadian Entomologist 118: 13091311.CrossRefGoogle Scholar
Harvey, G.T. 1985. Egg weight as a factor in the overwintering survival of spruce budworm (Lepidoptera: Tortricidae) larvae. The Canadian Entomologist 117: 14511461.CrossRefGoogle Scholar
Hew, C.L., Kao, M.H., and So, Y-P.. 1983. Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana. Canadian Journal of Zoology 61: 23242328.CrossRefGoogle Scholar
Horwath, K.L., and Duman, J.G.. 1984. Yearly variations in the overwintering mechanisms of the cold-hardy beetle Dendroides canadensis. Physiological Zoology 57: 4045.CrossRefGoogle Scholar
Keppler, D., and Decker, K.. 1974. Glycogen — determination with amyloglucosidase. pp. 1127–1131 in Bergmeyer, H.U. (Ed.), Methods of Enzymatic Analysis, Vol. 3, 2nd ed. Academic Press, Inc., New York, NY. 1624 pp.Google Scholar
Lee, R.E. 1991. Principles of insect low temperature tolerance. pp. 17–46 in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman and Hall, New York, NY. 513 pp.CrossRefGoogle Scholar
Mattson, W.J., Simmons, G.A., and Witter, J.A.. 1988. The spruce budworm in eastern North America. pp. 309–330 in Berryman, A.A. (Ed.), Dynamics of Forest Insect Populations. Plenum Press, New York, NY. 603 pp.Google Scholar
Miller, C.A. 1958. The measurement of spruce budworm populations and mortality during the first and second instars. Canadian Journal of Zoology 36: 409422.CrossRefGoogle Scholar
Panek, A., and Souza, N.O.. 1964. Purification and properties of bakers' yeast trehalase. Journal of Biological Chemistry 239: 16711673.CrossRefGoogle ScholarPubMed
Ring, R.A. 1982. Freezing-tolerant insects with low supercooling points. Comparative Biochemistry and Physiology 73A: 605612.CrossRefGoogle Scholar
Salt, R.W. 1953. The influence of food on cold-hardiness of insects. The Canadian Entomologist 85: 261269.CrossRefGoogle Scholar
Sanders, C.J. 1991. Biology of North American spruce budworms. pp. 579–620 in van der Geest, L.P.S., and Evenhuis, H.H. (Eds.), Tortricid Pests, Their Biology, Natural Enemies and Control. Elsevier Science Publishers B.V., Amsterdam, The Netherlands. 808 pp.Google Scholar
SAS Institute Inc. 1990. SAS Users Guide, Statistics. SAS Institute Inc., Cary, NC.Google Scholar
Schmidt, F.H., and Young, C.L.. 1971. Larval coloration in Choristoneura spp. (Lepidoptera, Tortricidae). Bile pigment in haemolymph. Journal of Insect Physiology 17: 843855.CrossRefGoogle Scholar
Stehr, G. 1959. Hemolymph polymorphism in a moth and the nature of sex-controlled inheritance. Evolution 13: 537560.CrossRefGoogle Scholar
Storey, K.B., and Storey, J.M.. 1991. Biochemistry of cryoprotectants. pp. 64–93 in Lee, R.E., and Denlinger, D.L. (Eds.), Insects at Low Temperature. Chapman and Hall, New York, NY. 513 pp.Google Scholar
Wellington, W.G., Fettes, J.J., Turner, K.B., and Belyea, R.M.. 1950. Physical and biological indicators of the development of outbreaks of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Canadian Journal of Research D 28: 308331.CrossRefGoogle Scholar
Zachariassen, K.E., and Hammel, H.T.. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262: 285287.CrossRefGoogle ScholarPubMed
Zachariassen, K.E., and Husby, J.A.. 1982. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298: 865867.CrossRefGoogle Scholar