Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T08:20:03.007Z Has data issue: false hasContentIssue false

Physiological basis for flexible voltinism in the spruce beetle (Coleoptera: Scolytidae)

Published online by Cambridge University Press:  31 May 2012

E. Matthew Hansen*
Affiliation:
USDA Forest Service, Rocky Mountain Research Station, 860 N 1200 E, Logan, Utah, United States 84321
Barbara J. Bentz
Affiliation:
USDA Forest Service, Rocky Mountain Research Station, 860 N 1200 E, Logan, Utah, United States 84321
David L. Turner
Affiliation:
USDA Forest Service, Rocky Mountain Research Station, 860 N 1200 E, Logan, Utah, United States 84321
*
1 Author to whom all correspondence should be addressed (E-mail: [email protected]).

Abstract

The spruce beetle, Dendroctonus rufipennis (Kirby), has described life cycles of 1–3 years. Although temperature has been shown to be strongly associated with flexible voltinism in the spruce beetle, the physiological basis for this phenomenon is not clear. Two competing hypotheses were tested under laboratory conditions. First, we tested the hypothesis that larval diapause, induced by cool temperatures during or before instar III, initiates prolonged life cycles while larvae not diapausing complete development to adults before the first winter. We compared development times at constant temperature (12 °C) and field-simulated thermoperiod treatments against development times in a reference (21 °C) treatment for which there is no indication of diapause induction. The constant temperature treatment was not significantly different than the reference treatment, although there were a few outliers. The thermoperiod treatment was significantly longer than the reference treatment, but only by a few days. These results provide little support for the hypothesis of larval diapause induction during or before instar III. Second, we investigated the hypothesis of life-cycle regulation through life stage specific developmental temperature thresholds, particularly, a relatively high threshold for pupation that might prevent development beyond the prepupal life stage under cool conditions. We found little evidence of distinct differences in low-temperature thresholds between life stages. Instar-IV larvae held at ≤ 15 °C, however, did not pupate for 125–300 days, a developmental arrest that suggests diapause. Based on all present and previous investigations, the induction-sensitive phase appears to be late in the instar-IV or early in the prepupal stages. For semivoltine spruce beetles, this life stage occurs late in the growing season, after most temperature-dependent development has been completed. It is our conclusion that spruce beetle voltinism is primarily under direct temperature control and that prepupal diapause is the default overwintering strategy for individuals not completing development to maturity by fall.

Résumé

On connaît, chez le Dendroctone de l’épinette, Dendroctonus rufipennis (Kirby), des cycles biologiques de 1 à 3 ans. Bien que la température soit étroitement associée au voltinisme flexible de cette espèce, les mécanismes physiologiques en cause restent mal connus. Deux hypothèses ont été éprouvées dans des conditions de laboratoire. D’abord, nous avons testé celle selon laquelle la diapause larvaire, déclenchée par des températures fraîches avant ou au cours du stade III, donne lieu à des cycles biologiques prolongés, alors que les larves qui ne font pas de diapause atteignent le stade adulte avant le premier hiver. Nous avons comparé la durée du développement, d’une part, à température constante (12 °C) et lors de traitements sur le terrain à la thermopériode simulée, et, d’autre part, à une température témoin (21 °C) qui ne semble pas déclencher de diapause. Le traitement à température constante ne donne pas de résultats significativement différents du traitement à la température témoin, bien qu’il y ait quelques données aberrantes. La durée du développement à la thermopériode simulée est significativement plus longue que celle à la température témoin, mais seulement de quelques jours. Ces résultats supportent mal l’hypothèse d’une diapause déclenchée avant ou durant le stade III. En second lieu, nous avons éprouvé l’hypothèse d’un contrôle du cycle par des seuils de température de développement spécifiques à chaque stade et, en particulier, par un seuil relativement élevé pour la nymphose qui peut potentiellement empêcher le développement au-delà du stade de prénymphe dans des conditions fraîches. Nous n’avons pas constaté de différences de seuils de basse température entre les stades. Cependant, les larves de stade IV gardées à 15 °C ont retardé leur nymphose de 125 à 300 jours, un arrêt du développement qui indique peut-être l’existence d’une diapause. D’après ces résultats et ceux d’études antérieures, la phase sensible du déclenchement de la diapause semble se situer vers la fin du stade IV ou au début du stade de prénymphe. Chez les Dendroctones de l’épinette semivoltines, cette étape du cycle apparaît vers la fin de la saison de croissance, après que tout le développement régi par la température ait été complété. Nous croyons que le voltinisme du Dendroctone de l’épinette est surtout contrôlé de façon directe par la température et que la diapause au stade de prénymphe est une stratégie de rechange qui permet aux larves qui n’ont pas atteint leur maturité avant l’automne de survivre à l’hiver.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1973. Population changes of the mountain pine beetle in relation to elevation. Environmental Entomology 2: 541–7CrossRefGoogle Scholar
Bakke, A. 1970. Effect of temperature on termination of diapause in larvae of Laspeyresia strobilella (L.) (Lepidoptera: Tortricidae). Entomologica Scandinavica 1: 209–14CrossRefGoogle Scholar
Beck, S.D. 1983. Insect thermoperiodism. Annual Review of Entomology 28: 91108CrossRefGoogle Scholar
Bentz, B.J., Logan, J.A., Amman, G.D. 1991. Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. The Canadian Entomologist 123: 1083–94CrossRefGoogle Scholar
Dyer, E.D.A. 1969. Influence of temperature inversion on development of spruce beetle, Dendroctonus obesus (Mannerheim) (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 66: 41–5Google Scholar
Dyer, E.D.A. 1970. Larval diapause in Dendroctonus obesus (Mannerheim) (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 67: 1821Google Scholar
Dyer, E.D.A., Hall, P.M. 1977. Factors affecting larval diapause in Dendroctonus rufipennis (Mannerheim) (Coleoptera: Scolytidae). The Canadian Entomologist 109: 1485–90CrossRefGoogle Scholar
Gerson, E.A., Kelsey, R.G., Ross, D.W. 1999. Pupal diapause of Coloradia pandora Blake (Lepidoptera: Saturniidae). Pan-Pacific Entomologist 75: 170–7Google Scholar
Gray, D.R., Ravlin, W.F., Logan, J.A. 1998. Micro-processor controlled mini-environmental chambers capable of sub-freezing temperatures in constant or time-varying temperature regimes. The Canadian Entomologist 130: 91104CrossRefGoogle Scholar
Hall, P.M., Dyer, E.D.A. 1974. Larval head-capsule widths of Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytidae). Journal of the Entomological Society of British Columbia 71: 10–2Google Scholar
Hamilton, L.C. 1992. Regression with graphics. Belmont, California: Duxbury PressGoogle Scholar
Han, E.N., Bauce, E. 1996. Diapause development of spruce budworm larvae, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), at temperatures favouring post-diapause development. The Canadian Entomologist 128: 167–9CrossRefGoogle Scholar
Hansen, E.M., Bentz, B.J., Turner, D.L. 2001. Temperature-based model for predicting univoltine brood proportions in spruce beetle (Coleoptera: Scolytidae). The Canadian Entomologist 133: 827–41CrossRefGoogle Scholar
Hilbert, D.W., Logan, J.A., Swift, D.M. 1985. A unifying hypothesis of temperature effects on egg development and diapause of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Journal of Theoretical Biology 112: 827–38CrossRefGoogle Scholar
Jenkins, J.L., Powell, J.A., Logan, J.A., Bentz, B.J. 2001. Low seasonal temperatures promote life cycle synchronization. Bulletin of Mathematical Biology 63: 573–95CrossRefGoogle ScholarPubMed
Knight, F.B. 1961. Variations in the life history of Engelmann spruce beetle. Annals of the Entomological Society of America 54: 209–14CrossRefGoogle Scholar
Linton, D.A., Safranyik, L. 1988. The spruce beetle, Dendroctonus rufipennis (Kirby): an annotated bibliography 1885–1987. Victoria, British Columbia: Canadian Forestry Service, Pacific Forestry CentreGoogle Scholar
Logan, J.A., Bentz, B.J. 1999. Model analysis of mountain pine beetle seasonality. Environmental Entomology 28(6): 924–34CrossRefGoogle Scholar
Logan, J.A., Hilbert, D.W. 1983. Modeling the effects of temperature on arthropod population systems. pp 113–22 in Lauenvoth, W.K., Skogerboe, G.V., and Flug, M. (Eds), Analysis of ecological systems: state-of-the-art in ecological modeling. Amsterdam: Elsevier Scientific Publishing CoCrossRefGoogle Scholar
Lyon, R.L. 1958. A useful secondary sex character in Dendroctonus bark beetles. The Canadian Entomologist 90: 582–4CrossRefGoogle Scholar
Massey, C.L., Wygant, N.D. 1954. Biology and control of the Engelmann spruce beetle in Colorado. US Department of Agriculture Circular 944Google Scholar
McCambridge, W.F., Knight, F.B. 1972. Factors affecting spruce beetles during a small outbreak. Ecology 53: 830–9CrossRefGoogle Scholar
Powell, J.A., Jenkins, J.L., Logan, J.A., Bentz, B.J. 2000. Seasonal temperature alone can synchronize life cycles. Bulletin of Mathematical Biology 62: 977–98CrossRefGoogle ScholarPubMed
Reynolds, K.M., Holsten, E.H. 1997. Sbexpert users guide (version 2.0): a knowledge-based decision-support system for spruce beetle management. US Forest Service General Technical Report PNW–GTR–401Google Scholar
Schmid, J.M., Frye, R.H. 1977. Spruce beetle in the Rockies. US Forest Service General Technical Report RM–49Google Scholar
Sota, T. 1996. Altitudinal variation in life cycles of carabid beetles: life cycle strategy and colonization in alpine zones. Arctic and Alpine Research 28: 441–7CrossRefGoogle Scholar
Tauber, M.J., Tauber, C.A., Masaki, S. 1986. Seasonal adaptations of insects. New York: Oxford University PressGoogle Scholar
Tauber, M.J., Tauber, C.A., Ruberson, J.R., Tauber, A.J., Abrahamson, L.P. 1990. Dormancy in Lymantria dispar (Lepidoptera: Lymantriidae): analysis of photoperiodic and thermal responses. Annals of the Entomological Society of America 83: 494503CrossRefGoogle Scholar
Togashi, K. 1995. Interacting effects of temperature and photoperiod on diapause in larvae of Monochamus alternatus (Coleoptera: Cerambycidae). Japanese Journal of Entomology 63: 243–52Google Scholar
Werner, R.A., Holsten, E.H. 1985. Factors influencing generation times of spruce beetles in Alaska. Canadian Journal of Forest Research 15: 438–43CrossRefGoogle Scholar
Zaslavski, V.A. 1988. Insect development: photoperiodic and temperature control. Berlin: Springer-VerlagCrossRefGoogle Scholar