Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T13:03:41.801Z Has data issue: false hasContentIssue false

PHYSIOLOGICAL ASPECTS OF LODGEPOLE PINE WOUND RESPONSES TO A FUNGAL SYMBIONT OF THE MOUNTAIN PINE BEETLE, DENDROCTONUS PONDEROSAE (COLEOPTERA: SCOLYTIDAE)1

Published online by Cambridge University Press:  31 May 2012

K. F. Raffa
Affiliation:
Department of Entomology, Washington State University, Pullman, Washington 99164
A. A. Berryman
Affiliation:
Department of Entomology, Washington State University, Pullman, Washington 99164

Abstract

The acetone-soluble fraction of phloem tissue samples from 78 lodgepole pines was examined prior to and following artificial inoculation with Europhium clavigerum, a fungus transmitted by the mountain pine beetle. All trees showed quantitative increases in the concentration of extractives within 3 days after treatment. Further increases continued for at least 7 days. By this time qualitative changes in the chemical composition of the host tissue had also occurred.

Trees were defined as resistant or susceptible depending on whether they survived beetle attack under natural conditions. The composition of the acetone-soluble extracts was similar for the constitutive tissue of resistant and susceptible trees, but the total quantity of acetone extractives of reaction tissue was higher in resistant trees.

The ability of trees to respond to fungal inoculation is diminished by mass attack. Trees responded more extensively to inoculation prior to, than during, aggregation under field conditions. An experiment was conducted to simulate this relationship under controlled conditions by examining the effect of multiple fungal inoculations on the production of monoterpenes during the wound response. Individual trees showed a weaker quantitative response on stem sections administered high inoculation densities than on stem sections administered only a single inoculation. Those trees which responded most extensively to a single invasion by the pathogen were more responsive at all inoculum densities.

Résumé

La fraction soluble dans l'acétone d'échantillons de tissu du phloème prélevé sur 78 pins a été examinée avant et après l'inoculation de Europhium clavigerum, un champignon transmis par le dendroctone du pin ponderosa. La concentration des produits extractibles a augmenté quantitativement pour tous les arbres, en dedans de 3 jours après le traitement. Ces augmentations se sont poursuivies pendant au moins 7 jours, après lesquels des changements qualitatifs de la composition chimique du tissu hôte s'étaient aussi produits.

Les arbres ont été définis comme étant résistants ou susceptibles selon qu'ils ont ou n'ont pas survécu à l'attaque de l'insecte dans des conditions naturelles. La composition de extraits à l'acétone était similaire pour les tissus constitutifs d'arbres résistants et susceptibles, mais la quantité totale des produits extractibles par l'acétone pour les tissus produits en réponse à l'attaque était plus élevée chez les arbres résistants.

La capacité des arbres à réagir à l'inoculation fongique est diminuée par une attaque massive. Une expérience fût menée pour simuler cette situation sous des conditions contrôlées, en examinant l'effet d'inoculations fongiques multiples sur la production de monoterpènes au cours de la réaction à la blessure. Les arbres individuels ont montré une réaction quantitative plus faible pour les sections de tiges inoculées avec de fortes densités, que pour celles exposées à une seule inoculation. Les arbres qui ont réagi le plus à une seule invasion du pathogène réagissaient plus à toutes les densités d'inoculum.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G. D. 1975. Abandoned mountain pine beetle galleries in lodgepole pine. U.S. Dep. Agric. For. Serv. Res. Note INT–197. 6 pp.Google Scholar
Berryman, A. A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22: 598602.CrossRefGoogle Scholar
Berryman, A. A. 1976. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Environ. Ent. 5: 12251233.CrossRefGoogle Scholar
Burbott, A. J. and Loomis, W. D.. 1967. Effect of light and temperature on the monoterpenes of peppermint. Plant Physiol. 42: 2028.CrossRefGoogle ScholarPubMed
Hamming, M. C. and Foster, N. G.. 1972. Interpretation of mass spectra of organic compounds. Academic Press, N.Y.694 pp.Google Scholar
Hughes, P. R. 1974. Myrcene: a precursor of pheromones in Ips beetles. J. Insect Physiol. 20: 12711275.CrossRefGoogle ScholarPubMed
Jones, S. B. Jr.,, Burnett, W. C. Jr., Coile, N. C., Mabry, T. J., and Betkouski, M. F.. 1979. Sesquiterpene lactones of Vernonia-influence of glucolide-A on the growth rate and survival of lepidopterous larvae. Oecologia 39: 7177.CrossRefGoogle ScholarPubMed
Kosuge, T. 1969. The role of phenolics in host response to infection. A. Rev. Phytopath. 7: 195222.CrossRefGoogle Scholar
McLafferty, F. W. 1980. Interpretations of Mass Spectra. University Science Books, Mill Valley, California. 303 pp.Google Scholar
Peterman, R. M. 1977. An evaluation of the fungal inoculation method of determining the resistance of lodgepole pine to mountain pine beetle (Coleoptera: Scolytidae) attacks. Can. Ent. 109: 443448.CrossRefGoogle Scholar
Raffa, K. F. and Berryman, A. A.. 1980. Flight responses and host selection by bark beetles. Pages 213233In Berryman, A. A. and Safranyik, L. (Eds.), Proc. 2nd IUFRO Confer. on Disperal of forest insects. Coop. Ext. Serv., WSU, Pullman, WA.Google Scholar
Raffa, K. F. and Berryman, A. A. 1982 a. Physiological differences between lodgepole pines resistant and susceptible to the mountain pine beetle and associated microorganisms. Environ. Ent. 11: 486492.CrossRefGoogle Scholar
Raffa, K. F. and Berryman, A. A. 1982 b. Accumulation of monoterpenes and associated volatiles following fungal inoculation of grand fir by the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Can. Ent. 114: 797810.CrossRefGoogle Scholar
Raffa, K. F. and Berryman, A. A. 1982 c. Gustatory cues in the orientation of Dendroctonus ponderosae (Coleoptera: Scolytidae) to host trees. Can. Ent. 114: 97104.CrossRefGoogle Scholar
Raffa, K. F. and Berryman, A. A. 1983. The role of host resistance in the colonization behavior and ecology of bark beetles. Ecol. Monog. 53: 2749.CrossRefGoogle Scholar
Reid, R. W., Whitney, H. S., and Watson, J. A.. 1967. Reaction of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Can. J. Bot. 45: 11151126.CrossRefGoogle Scholar
Rowe, J. W., Ronald, R. C., and Nagasampagi, B. A.. 1972. Terpenoids of lodgepole pine bark. Phytochemistry 11: 365369.CrossRefGoogle Scholar
Safranyik, L., Shrimpton, D. M., and Whitney, H. S.. 1975. An interpretation of the interaction between lodgepole pine, the mountain pine beetle and its associated blue stain fungi in western Canada. Pages 406–428 in Baumgartner, D. M. (Ed.), Management of lodgepole pine ecosystems. Washington St. Univ. Coop. Ext. Serv. 825 pp.Google Scholar
Shain, L. 1967. Resistance of sapwood in stems of loblolly pine to infection by Fomes annosus. Phytopathology 57: 10341045.Google Scholar
Shrimpton, D. M. 1973. Extractives associated with the wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Can. J. Bot. 51: 527534.CrossRefGoogle Scholar
Shrimpton, D. M. 1978. Resistance of lodgepole pine to mountain pine beetle infestation. Pages 6476in Berryman, A. A., Amman, G. D., Stark, R. W., and Kibbee, D. L. (Eds.), Theory and practice of mountain pine beetle management in lodgepole pine forests. College of Forest Resources, University of Idaho, Moscow.Google Scholar
Shrimpton, D. M. and Whitney, H. S.. 1968. Inhibition of growth of blue stain fungi by wood extractives. Can. J. Bot. 46: 757761.CrossRefGoogle Scholar
Steele, J. W. and Bolan, M.. 1972. Phytochemistry of the Salicaceae. III. A gas-liquid chromatographic procedure for the identification of plant phenols. J. Chromatogr. 71: 427434.CrossRefGoogle Scholar
Stoessl, A., Stothers, J. B., and Ward, E. W. B.. 1976. Sesquiterpenoid stress compounds of the Solanaceae. Phytochemistry 15: 855872.CrossRefGoogle Scholar
Taniguchi, M., Yamaguchi, M., Kubo, I., and Kubota, T.. 1979. Inhibitory effect of Isodon diterpenoids on growth and mitochondrial oxidative phosphorylation in lepidopterous insects. Agric. Biol. Chem. 43: 7174.Google Scholar
Thalenhorst, W. 1958. Grundzuge der populationsdynamik des grössen Fichten – borkenkafers Ips typographus L. Shriftenreihe der Forstlichen Fakültat der Universitat Gottingen. No. 21, 126 pp.Google Scholar
Tjia, B. and Houston, D. B.. 1975. Phenolic constituents of Norway Spruce resistant aad susceptible to the eastern spruce gall aphid. For. Sci. 22: 180184.Google Scholar
Varns, J. L., Kuc, J., and Williams, E. B.. 1971. Terpenoid accumulation as a biochemical response of the potato tuber to Phytophora infestans. Phytopathology 61: 174177.CrossRefGoogle Scholar
Vité, J. P., Bakke, A., and Renwick, J. A. A.. 1972. Pheromones in Ips (Coleoptera: Scolytidae): Occurrence and production. Can. Ent. 104: 19671975.CrossRefGoogle Scholar
Ward, E. W. B., Unwin, C. H., and Stoessl, A.. 1974. Postinfection inhibitors from plants. XIII. Fungitoxicity of the phytoalexin capsidiol, and related sesquiterpenes. Can. J. Bot. 52: 24812488.CrossRefGoogle Scholar
Wong, B. L. 1975. Artificial inoculation of Trichosporium symbioticum Wright into Abies grandis (Douglas) Lindley: Some anatomical and chemical characteristics of the lesion. Ph.D. Dissert., Washington St. Univ., Pullman. 86 pp.Google Scholar
Wood, D. L. 1972. Selection and colonization of ponderosa pine by bark beetles. Pages 101107in van Emden, H. F. (Ed.), R.E.S. Symposium No. 6: Insect/Plant Relationships. Blackwell Scient. Publ., Oxford.Google Scholar
Wright, L. C., Berryman, A. A., and Gurusiddaiah, S.. 1979. Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 4. Effect of defoliation on wound monoterpene and inner bark carbohydrate concentrations. Can. Ent. 111: 12551262.CrossRefGoogle Scholar